Make fft work #1
7 changed files with 441 additions and 28 deletions
2
Makefile
2
Makefile
|
@ -1,4 +1,4 @@
|
|||
CFLAGS = -ansi -pedantic -Wall -Wextra -O2 -Ofast -D_DEFAULT_SOURCE
|
||||
CFLAGS = -std=c11 -pedantic -Wall -Wextra -O2 -Ofast -D_DEFAULT_SOURCE
|
||||
LDFLAGS = -lX11 -lGL -lGLEW -lfftw3 -lm -lrt
|
||||
|
||||
shadermeh: shadermeh.o window.o shader.o
|
||||
|
|
115
shadermeh.c
115
shadermeh.c
|
@ -21,47 +21,101 @@ static GLfloat vertex_buffer[] = {
|
|||
};
|
||||
|
||||
static GLubyte audio_buffer[AUDIO_SAMPLES * AUDIO_CHANNELS];
|
||||
static float audio_sample_data[AUDIO_SAMPLES];
|
||||
static fftw_complex fftw_in[AUDIO_SAMPLES];
|
||||
static fftw_complex fftw_out[AUDIO_SAMPLES];
|
||||
size_t sample_pointer = 0;
|
||||
size_t sample_data_pointer = 0;
|
||||
size_t sample_rate = 0;
|
||||
static float *audio_sample_data;
|
||||
static float *audio_receive_data;
|
||||
static double *fftw_in;
|
||||
static fftw_complex *fftw_out;
|
||||
static fftw_plan plan;
|
||||
|
||||
static int try_fetch_audio(void)
|
||||
static int try_fetch_audio(float iTimeDelta)
|
||||
{
|
||||
size_t i, count = 0;
|
||||
int ret;
|
||||
/* To avoid generating stale images, we keep our own sample buffer,
|
||||
* which is then used to move a sliding window of data for the fft and
|
||||
* wave samples. We need to do this, as otherwise we would set an upper
|
||||
* limit of fps (20 at 4800kHz sample rate), which would not be good.
|
||||
* The size of the window is set in the header file. The with our
|
||||
* approach is that the buffer allows for drifting to occur within the
|
||||
* buffer limits. If you buffer is 3s long the delay can grow to 3s.
|
||||
* Choose your buffer size wisely for your application.
|
||||
*/
|
||||
size_t i;
|
||||
ssize_t ret = 0;
|
||||
memset(audio_receive_data, 0, AUDIO_BUFFER_SIZE *
|
||||
sizeof(*audio_receive_data));
|
||||
sample_pointer += (sample_rate * iTimeDelta);
|
||||
|
||||
for (;;) {
|
||||
ret = read(STDIN_FILENO,
|
||||
(char *)audio_sample_data + count,
|
||||
sizeof(audio_sample_data) - count);
|
||||
ret = read(STDIN_FILENO, (char *)audio_receive_data,
|
||||
sizeof(*audio_receive_data)*AUDIO_BUFFER_SIZE);
|
||||
|
||||
if (ret < 0) {
|
||||
if (errno == EINTR)
|
||||
continue;
|
||||
if (errno == EAGAIN)
|
||||
if (errno == EAGAIN || errno == EWOULDBLOCK)
|
||||
break;
|
||||
perror("stdin");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (ret == 0)
|
||||
if (ret == 0 || ret % sizeof(float) != 0){
|
||||
break;
|
||||
}
|
||||
|
||||
count += ret;
|
||||
ret /= 4;
|
||||
if((ret + sample_pointer) > AUDIO_BUFFER_SIZE){
|
||||
/* Not enough storage space to store all new audio data,
|
||||
* will override not output data with new one */
|
||||
memset(audio_sample_data, 0,
|
||||
AUDIO_BUFFER_SIZE * sizeof(*audio_sample_data));
|
||||
memcpy(audio_sample_data, audio_receive_data,
|
||||
ret * sizeof(*audio_sample_data));
|
||||
sample_pointer = 0;
|
||||
sample_data_pointer = ret;
|
||||
}else{
|
||||
memmove(audio_sample_data,
|
||||
&audio_sample_data[sample_pointer],
|
||||
(AUDIO_BUFFER_SIZE - sample_pointer)*
|
||||
sizeof(*audio_sample_data));
|
||||
if(sample_data_pointer <= sample_pointer){
|
||||
sample_data_pointer = 0;
|
||||
|
||||
}else{
|
||||
sample_data_pointer -= sample_pointer;
|
||||
|
||||
}
|
||||
sample_pointer = 0;
|
||||
size_t len = ret;
|
||||
if((ret + sample_data_pointer) >= AUDIO_BUFFER_SIZE){
|
||||
len = AUDIO_BUFFER_SIZE - sample_data_pointer;
|
||||
}
|
||||
memcpy(&audio_sample_data[sample_data_pointer],
|
||||
audio_receive_data, len * sizeof(float));
|
||||
sample_data_pointer += len;
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
if((sample_pointer+AUDIO_FFT_SIZE) >= sample_data_pointer){
|
||||
fprintf(stderr, "shadermeh input to slow %zu > %zu! wrapping around!\n", sample_pointer+AUDIO_FFT_SIZE, sample_data_pointer);
|
||||
sample_pointer = 0;
|
||||
}
|
||||
|
||||
for (i = 0; i < AUDIO_SAMPLES; ++i)
|
||||
fftw_in[i][0] = audio_sample_data[i];
|
||||
memset(fftw_in, 0, sizeof(*fftw_in) * AUDIO_BUFFER_SIZE);
|
||||
memset(fftw_out, 0, sizeof(*fftw_out) * AUDIO_BUFFER_SIZE);
|
||||
|
||||
for (i = 0; i < AUDIO_FFT_SIZE; ++i)
|
||||
fftw_in[i] = audio_sample_data[sample_pointer+i];
|
||||
|
||||
fftw_execute(plan);
|
||||
|
||||
for (i = 0; i < AUDIO_SAMPLES; ++i) {
|
||||
float x = fftw_out[i][0], y = fftw_out[i][1];
|
||||
float a = sqrt(x * x + y * y);
|
||||
float a = cabs(fftw_out[i]);
|
||||
|
||||
audio_buffer[i + AUDIO_SAMPLES] = audio_sample_data[i] * 127.0f + 127.0f;
|
||||
audio_buffer[i] = 127.0f + a * 127.0f;
|
||||
audio_buffer[i + AUDIO_SAMPLES] = audio_sample_data[sample_pointer+i] * 127.0f + 127.0f;
|
||||
audio_buffer[i] = log(fabsf(a)+1) * 50;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
@ -159,11 +213,11 @@ static const struct option long_opts[] = {
|
|||
{ "height", required_argument, NULL, 'h' },
|
||||
{ "shader", required_argument, NULL, 's' },
|
||||
{ "to-stdout", no_argument, NULL, 'S' },
|
||||
{ "stdin-audio", no_argument, NULL, 'a' },
|
||||
{ "stdin-audio", required_argument, NULL, 'a' },
|
||||
{ NULL, 0, NULL, 0 },
|
||||
};
|
||||
|
||||
static const char *short_opts = "w:h:s:Sa";
|
||||
static const char *short_opts = "w:a:h:s:S";
|
||||
|
||||
static const char *usage_str =
|
||||
"shadermeh OPTIONS...\n"
|
||||
|
@ -174,7 +228,7 @@ static const char *usage_str =
|
|||
" --height, -h <pixels>\n"
|
||||
"\n"
|
||||
" --to-stdout, -S Poop raw RGB24 frames to stdout (blocking)\n"
|
||||
" --stdin-audio, -a Read raw PCM audio from stdin (non-blocking)\n"
|
||||
" --stdin-audio, -a <sample rate> Read raw PCM audio from stdin (non-blocking)\n"
|
||||
"\n"
|
||||
" --shader, -s <shader file>\n"
|
||||
"\n";
|
||||
|
@ -188,7 +242,7 @@ int main(int argc, char **argv)
|
|||
void *fb32 = NULL, *fb24 = NULL;
|
||||
const char *shader_file = NULL;
|
||||
GLint major, minor, prog;
|
||||
float iTime, iTimeDelta;
|
||||
float iTime, iTimeDelta = 0;
|
||||
bool have_audio = false;
|
||||
bool to_stdout = false;
|
||||
window *wnd;
|
||||
|
@ -218,6 +272,11 @@ int main(int argc, char **argv)
|
|||
break;
|
||||
case 'a':
|
||||
have_audio = true;
|
||||
sample_rate = strtol(optarg, NULL, 10);
|
||||
audio_sample_data = malloc(AUDIO_BUFFER_SIZE *
|
||||
sizeof(float));
|
||||
audio_receive_data = malloc(AUDIO_BUFFER_SIZE *
|
||||
sizeof(float));
|
||||
break;
|
||||
default:
|
||||
fputs(usage_str, stderr);
|
||||
|
@ -341,8 +400,12 @@ int main(int argc, char **argv)
|
|||
glBindSampler(0, sampler_sound);
|
||||
|
||||
if (have_audio) {
|
||||
plan = fftw_plan_dft_1d(AUDIO_SAMPLES, fftw_in, fftw_out,
|
||||
FFTW_FORWARD, FFTW_ESTIMATE);
|
||||
fftw_in = fftw_alloc_real(AUDIO_BUFFER_SIZE);
|
||||
fftw_out = fftw_alloc_complex(AUDIO_BUFFER_SIZE);
|
||||
if(fftw_in == NULL || fftw_out == NULL)
|
||||
goto fail_vao;
|
||||
plan = fftw_plan_dft_r2c_1d(AUDIO_BUFFER_SIZE, fftw_in, fftw_out,
|
||||
FFTW_MEASURE);
|
||||
}
|
||||
|
||||
/******************** framebuffer object ********************/
|
||||
|
@ -377,7 +440,7 @@ int main(int argc, char **argv)
|
|||
glClear(GL_COLOR_BUFFER_BIT);
|
||||
|
||||
if (have_audio) {
|
||||
if (try_fetch_audio())
|
||||
if (try_fetch_audio(iTimeDelta))
|
||||
break;
|
||||
|
||||
glBindTexture(GL_TEXTURE_2D, sound_tex);
|
||||
|
@ -451,6 +514,8 @@ fail_vao:
|
|||
window_make_current(NULL);
|
||||
free(fb32);
|
||||
free(fb24);
|
||||
fftw_free(fftw_in);
|
||||
fftw_free(fftw_out);
|
||||
window_destroy(wnd);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
|
|
@ -27,10 +27,13 @@
|
|||
#include <poll.h>
|
||||
#include <time.h>
|
||||
|
||||
#include <fftw3.h>
|
||||
#include <math.h>
|
||||
#include <complex.h>
|
||||
#include <fftw3.h>
|
||||
|
||||
#define AUDIO_SAMPLES (512)
|
||||
#define AUDIO_SAMPLES (4096)
|
||||
#define AUDIO_BUFFER_SIZE (sample_rate * 3)
|
||||
#define AUDIO_FFT_SIZE (AUDIO_SAMPLES * 2)
|
||||
#define AUDIO_CHANNELS (2)
|
||||
|
||||
typedef struct {
|
||||
|
|
84
shaders/eclipse.frag
Normal file
84
shaders/eclipse.frag
Normal file
|
@ -0,0 +1,84 @@
|
|||
// credit: https://www.shadertoy.com/view/4tGXzt
|
||||
|
||||
#define BEATMOVE 1
|
||||
|
||||
const float FREQ_RANGE = 64.0;
|
||||
const float PI = 3.1415;
|
||||
const float RADIUS = 0.6;
|
||||
const float BRIGHTNESS = 0.2;
|
||||
const float SPEED = 0.5;
|
||||
|
||||
//convert HSV to RGB
|
||||
vec3 hsv2rgb(vec3 c){
|
||||
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
|
||||
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
|
||||
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
||||
}
|
||||
|
||||
float luma(vec3 color) {
|
||||
return dot(color, vec3(0.299, 0.587, 0.114));
|
||||
}
|
||||
|
||||
float getfrequency(float x) {
|
||||
return texture(iChannel0, vec2(floor(x * FREQ_RANGE + 1.0) / FREQ_RANGE, 0.25)).x + 0.06;
|
||||
}
|
||||
|
||||
float getfrequency_smooth(float x) {
|
||||
float index = floor(x * FREQ_RANGE) / FREQ_RANGE;
|
||||
float next = floor(x * FREQ_RANGE + 1.0) / FREQ_RANGE;
|
||||
return mix(getfrequency(index), getfrequency(next), smoothstep(0.0, 1.0, fract(x * FREQ_RANGE)));
|
||||
}
|
||||
|
||||
float getfrequency_blend(float x) {
|
||||
return mix(getfrequency(x), getfrequency_smooth(x), 0.5);
|
||||
}
|
||||
|
||||
vec3 doHalo(vec2 fragment, float radius) {
|
||||
float dist = length(fragment);
|
||||
float ring = 1.0 / abs(dist - radius);
|
||||
|
||||
float b = dist < radius ? BRIGHTNESS * 0.3 : BRIGHTNESS;
|
||||
|
||||
vec3 col = vec3(0.0);
|
||||
|
||||
float angle = atan(fragment.x, fragment.y);
|
||||
col += hsv2rgb( vec3( ( angle + iTime * 0.25 ) / (PI * 2.0), 1.0, 1.0 ) ) * ring * b;
|
||||
|
||||
float frequency = max(getfrequency_blend(abs(angle / PI)) - 0.02, 0.0);
|
||||
col *= frequency;
|
||||
|
||||
// Black halo
|
||||
col *= smoothstep(radius * 0.5, radius, dist);
|
||||
|
||||
return col;
|
||||
}
|
||||
|
||||
vec3 doLine(vec2 fragment, float radius, float x) {
|
||||
vec3 col = hsv2rgb(vec3(x * 0.23 + iTime * 0.12, 1.0, 1.0));
|
||||
|
||||
float freq = abs(fragment.x * 0.5);
|
||||
|
||||
col *= (1.0 / abs(fragment.y)) * BRIGHTNESS * getfrequency(freq);
|
||||
col = col * smoothstep(radius, radius * 1.8, abs(fragment.x));
|
||||
|
||||
return col;
|
||||
}
|
||||
|
||||
|
||||
void mainImage( out vec4 fragColor, in vec2 fragCoord ) {
|
||||
vec2 fragPos = fragCoord / iResolution.xy;
|
||||
fragPos = (fragPos - 0.5) * 2.0;
|
||||
fragPos.x *= iResolution.x / iResolution.y;
|
||||
|
||||
vec3 color = vec3(0.0134, 0.052, 0.1);
|
||||
color += doHalo(fragPos, RADIUS);
|
||||
|
||||
float c = cos(iTime * SPEED);
|
||||
float s = sin(iTime * SPEED);
|
||||
vec2 rot = mat2(c,s,-s,c) * fragPos;
|
||||
color += doLine(rot, RADIUS, rot.x);
|
||||
|
||||
color += max(luma(color) - 1.0, 0.0);
|
||||
|
||||
fragColor = vec4(color, 1.0);
|
||||
}
|
65
shaders/fft.frag
Normal file
65
shaders/fft.frag
Normal file
|
@ -0,0 +1,65 @@
|
|||
/*
|
||||
|
||||
Linear vs Logarithmic FFT
|
||||
|
||||
some good test songs:
|
||||
|
||||
https://soundcloud.com/kraddy/winning
|
||||
https://soundcloud.com/grey-houston/soothing-piano-melody
|
||||
https://soundcloud.com/pointpoint/life-in-gr
|
||||
|
||||
*/
|
||||
|
||||
//from https://stackoverflow.com/questions/35799286
|
||||
float toLog(float value, float min, float max){
|
||||
float exp = (value-min) / (max-min);
|
||||
return min * pow(max/min, exp);
|
||||
}
|
||||
|
||||
float getLevel(float samplePos){
|
||||
// the sound texture is 512x2
|
||||
int tx = int(samplePos*512.0);
|
||||
// first row is frequency data (48Khz/4 in 512 texels, meaning 23 Hz per texel)
|
||||
return texelFetch( iChannel0, ivec2(tx,0), 0 ).x;
|
||||
}
|
||||
|
||||
|
||||
void mainImage( out vec4 fragColor, in vec2 fragCoord )
|
||||
{
|
||||
vec2 uv = fragCoord.xy / iResolution.xy;
|
||||
|
||||
float xPos;
|
||||
float fft;
|
||||
|
||||
if (uv.y > 0.5){
|
||||
|
||||
//linear sampling
|
||||
xPos = uv.x;
|
||||
fft = getLevel(xPos);
|
||||
|
||||
}else{
|
||||
|
||||
//crop bottom and top of range
|
||||
uv.x = mix(0.3,0.7, uv.x);
|
||||
|
||||
//logarithmic sampling
|
||||
xPos = toLog(uv.x, 0.01, 1.0);
|
||||
|
||||
fft = getLevel(xPos);
|
||||
|
||||
//boost contrast
|
||||
fft = pow(fft,3.0);
|
||||
|
||||
//boost gain
|
||||
fft *= 1.5;
|
||||
|
||||
//contrast / brightness
|
||||
float contrast = 1.4;
|
||||
float brightness = 0.;
|
||||
fft = (fft - 0.5) * contrast + 0.5 + brightness;
|
||||
|
||||
}
|
||||
|
||||
fragColor = vec4(vec3(fft),1.0);
|
||||
|
||||
}
|
158
shaders/grid.frag
Normal file
158
shaders/grid.frag
Normal file
|
@ -0,0 +1,158 @@
|
|||
//https://www.shadertoy.com/view/XlBXRh with mic not soundcloud
|
||||
#define preset4
|
||||
|
||||
#ifdef preset1
|
||||
#define cells vec2(14.,14.)
|
||||
#define persp 1.5
|
||||
#define height 1.
|
||||
#define linewidth .5
|
||||
#define lineexp 4.
|
||||
#define brightness .7
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef preset2
|
||||
#define cells vec2(10.,5.)
|
||||
#define persp 2.5
|
||||
#define height 1.
|
||||
#define linewidth 3.
|
||||
#define lineexp 6.
|
||||
#define brightness .4
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef preset3
|
||||
#define OPAQUE_MODE
|
||||
#define INVERSE
|
||||
#define cells vec2(16.,16.)
|
||||
#define persp 1.
|
||||
#define height 1.5
|
||||
#define linewidth .1
|
||||
#define lineexp .5
|
||||
#define brightness .8
|
||||
#endif
|
||||
|
||||
#ifdef preset4
|
||||
#define OPAQUE_MODE
|
||||
#define cells vec2(10.,10.)
|
||||
#define persp 2.
|
||||
#define height .75
|
||||
#define linewidth .2
|
||||
#define lineexp 1.
|
||||
#define brightness 1.5
|
||||
#endif
|
||||
|
||||
#ifdef preset5
|
||||
#define INVERSE
|
||||
#define cells vec2(6.,25.)
|
||||
#define persp 1.
|
||||
#define height 2.
|
||||
#define linewidth .07
|
||||
#define lineexp .3
|
||||
#define brightness .35
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef preset6
|
||||
#define INVERSE
|
||||
#define OPAQUE_MODE
|
||||
#define cells vec2(15.,15.)
|
||||
#define persp 2.5
|
||||
#define height 1.
|
||||
#define linewidth .05
|
||||
#define lineexp .5
|
||||
#define brightness 1.
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
#define hcells (cells*.5)
|
||||
|
||||
|
||||
vec3 segment(vec2 p, vec3 from, vec3 to, float width, float dist) {
|
||||
width=1./width;
|
||||
vec2 seg=from.xy-to.xy;
|
||||
float halfdist=distance(from.xy,to.xy)*.5;
|
||||
float ang=atan(seg.y,seg.x);
|
||||
float sine=sin(ang);
|
||||
float cose=cos(ang);
|
||||
p-=from.xy;
|
||||
p*=mat2(cose,sine,-sine,cose);
|
||||
float dx=abs(p.x+halfdist)-halfdist;
|
||||
float dy=abs(p.y);
|
||||
float h=1.-abs(p.x+halfdist*2.)/halfdist/2.;
|
||||
float pz=-from.z-(to.z-from.z)*h;
|
||||
float l=1.-clamp(max(dx,dy)*width/(pz+dist)*dist*dist,0.,.1)/.1;
|
||||
l=pow(abs(l),lineexp)*(1.-pow(clamp(abs(dist-pz)*.45,0.,1.),.5))*4.;
|
||||
return normalize(.25+abs(mix(from,to,h)))*l;
|
||||
}
|
||||
|
||||
mat3 rotmat(vec3 v, float angle)
|
||||
{
|
||||
angle=radians(angle);
|
||||
float c = cos(angle);
|
||||
float s = sin(angle);
|
||||
|
||||
return mat3(c + (1.0 - c) * v.x * v.x, (1.0 - c) * v.x * v.y - s * v.z, (1.0 - c) * v.x * v.z + s * v.y,
|
||||
(1.0 - c) * v.x * v.y + s * v.z, c + (1.0 - c) * v.y * v.y, (1.0 - c) * v.y * v.z - s * v.x,
|
||||
(1.0 - c) * v.x * v.z - s * v.y, (1.0 - c) * v.y * v.z + s * v.x, c + (1.0 - c) * v.z * v.z
|
||||
);
|
||||
}
|
||||
|
||||
float getz(vec2 xy) {
|
||||
xy=xy*10.+hcells;
|
||||
//float pos=length(pow(abs(xy/cells),vec2(3.)))*8.;
|
||||
float pos=(xy.y*cells.x+xy.x)/(cells.x*cells.y);
|
||||
float s=texture(iChannel0,vec2(.5+pos*.5,.1)).x;
|
||||
return .25-pow(s,1.5)*height;
|
||||
}
|
||||
|
||||
void mainImage( out vec4 fragColor, in vec2 fragCoord )
|
||||
{
|
||||
vec2 uv = (gl_FragCoord.xy / iResolution.xy-.5)*2.;
|
||||
uv.y*=iResolution.y/iResolution.x;
|
||||
mat3 camrot=rotmat(normalize(vec3(0.,0.,1.)),iTime*25.)*rotmat(normalize(vec3(1.,0.*sin(iTime*.5),0.)),60.+30.*sin(iTime*.5));
|
||||
float s=.1,maxc=0.;
|
||||
vec3 p1,p2,p3;
|
||||
vec3 rotv=vec3(0.,0.,1.);
|
||||
float h;
|
||||
vec3 col=vec3(0.);
|
||||
float dist=1.2+pow(abs(sin(iTime*.3)),5.)*.5;
|
||||
vec3 c=vec3(0.);
|
||||
for (float y=0.; y<cells.y; y++) {
|
||||
for (float x=0.; x<cells.x; x++) {
|
||||
p1=vec3(x-hcells.x,y-hcells.y,0.)*.1; p1.z=getz(p1.xy);
|
||||
p2=vec3(p1.x+.1,p1.y ,0.); p2.z=getz(p2.xy);
|
||||
p3=vec3(p1.x ,p1.y+.1,0.); p3.z=getz(p3.xy);
|
||||
p1*=camrot; p2*=camrot; p3*=camrot;
|
||||
p1.xy*=persp/max(0.1,p1.z+dist);
|
||||
p2.xy*=persp/max(0.1,p2.z+dist);
|
||||
p3.xy*=persp/max(0.1,p3.z+dist);
|
||||
if (max(p1.x,p2.x)>uv.x-linewidth/4. && min(p1.x,p2.x)<uv.x+linewidth/4. && x<cells.x-1.) {
|
||||
if (max(p1.y,p2.y)>uv.y-linewidth/4. && min(p1.y,p2.y)<uv.y+linewidth/4.) {
|
||||
#ifdef OPAQUE_MODE
|
||||
c=max(c,segment(uv,p1,p2,linewidth,dist)*1.5);
|
||||
#else
|
||||
c+=segment(uv,p1,p2,linewidth,dist);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
if (max(p1.x,p3.x)>uv.x-linewidth/4. && min(p1.x,p3.x)<uv.x+linewidth/4. && y<cells.y-1.) {
|
||||
if (max(p1.y,p3.y)>uv.y-linewidth/4. && min(p1.y,p3.y)<uv.y+linewidth/4.) {
|
||||
#ifdef OPAQUE_MODE
|
||||
c=max(c,segment(uv,p1,p3,linewidth,dist)*1.5);
|
||||
#else
|
||||
c+=segment(uv,p1,p3,linewidth,dist);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
c*=brightness;
|
||||
#ifdef INVERSE
|
||||
fragColor = vec4(1.-c,1.);
|
||||
#else
|
||||
fragColor = vec4(c,1.);
|
||||
#endif
|
||||
}
|
38
shaders/spectrum.frag
Normal file
38
shaders/spectrum.frag
Normal file
|
@ -0,0 +1,38 @@
|
|||
/*
|
||||
2D LED Spectrum - Visualiser
|
||||
Based on Led Spectrum Analyser by: simesgreen - 27th February, 2013 https://www.shadertoy.com/view/Msl3zr
|
||||
2D LED Spectrum by: uNiversal - 27th May, 2015
|
||||
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
|
||||
*/
|
||||
|
||||
void mainImage( out vec4 fragColor, in vec2 fragCoord )
|
||||
{
|
||||
// create pixel coordinates
|
||||
vec2 uv = fragCoord.xy / iResolution.xy;
|
||||
|
||||
// quantize coordinates
|
||||
const float bands = 30.0;
|
||||
const float segs = 40.0;
|
||||
vec2 p;
|
||||
p.x = floor(uv.x*bands)/bands;
|
||||
p.y = floor(uv.y*segs)/segs;
|
||||
|
||||
// read frequency data from first row of texture
|
||||
float fft = texture( iChannel0, vec2(p.x,0.0) ).x;
|
||||
|
||||
// led color
|
||||
vec3 color = mix(vec3(0.0, 2.0, 0.0), vec3(2.0, 0.0, 0.0), sqrt(uv.y));
|
||||
|
||||
// mask for bar graph
|
||||
float mask = (p.y < fft) ? 1.0 : 0.1;
|
||||
|
||||
// led shape
|
||||
vec2 d = fract((uv - p) *vec2(bands, segs)) - 0.5;
|
||||
float led = smoothstep(0.5, 0.35, abs(d.x)) *
|
||||
smoothstep(0.5, 0.35, abs(d.y));
|
||||
vec3 ledColor = led*color*mask;
|
||||
|
||||
// output final color
|
||||
fragColor = vec4(ledColor, 1.0);
|
||||
}
|
||||
|
Loading…
Reference in a new issue