
HTL Anichstraße
Biomedizin · Elektronik · Elektrotechnik · Maschinenbau ·Wirtschaftsingenieure

DIPLOMARBEIT

FPGA-basiertes RISC-V-Computersystem: YARM

Höhere Technische Bundeslehr- und Versuchsanstalt Anichstraße

Abteilung

Elektronik und technische Informatik

Ausgeführt im Schuljahr 2019/20 von:

Armin Brauns 5AHEL

Daniel Plank 5BHEL

Betreuer/Betreuerin:

Dipl.-Ing. Christoph Schönherr

Projektpartner: IT-Syndikat, Verein zur Förderung des freien Zugangs zu techni-
scher Fort- und Weiterbildung jeglicher Art, Hackerspace Innsbruck

Ansprechpartner: Ing. David Oberhollenzer B.Sc.

Innsbruck, am 26. März 2020

Abgabevermerk:

Datum:

Betreuer/in:

Gendererklärung

Aus Gründen der besseren Lesbarkeit wird in dieser Diplomarbeit die Sprachform des
generischen Maskulinums angewendet. Es wird an dieser Stelle darauf hingewiesen,
dass die ausschließliche Verwendung der männlichen Form geschlechtsunabhängig
verstanden werden soll.

This thesis is written in the language form if the generic masculin for improved
readability. It is pointed out that all masculin-only uses may and should be interpreted
as gender neutral.

Kurzfassung/Abstract

Diese Diplomarbeit beschäftigt sich mit der Arbeitsweise von Prozessoren und
Prozessorperipherie in moderner und traditioneller Form. Sie versucht anschaulich
den Aufbau eines Computersystems in Hard- und Software veranschaulichen sowie
diesen erklären. Dafür wurde auf einem XILINX FPGA ein RISC-V32I Prozessor
in VHDL implementiert sowie diverse Parallelbus gebundene Hardwareperipherie
entwickelt und gebaut. Als Harwareperipherie wurde ein 8-Bit 2-Kanal DAC und eine
serielle Schnittstelle mit TIA-/EIA-232 Pegeln gebaut. Der Prozessor implementiert
das RISC-V32I base instruction set. Aufgrund der starken Verwendung von Englisch
im Software- und Hardwarebereich wurde diese Diplomarbeit in Englisch verfasst,
was ebenfalls die Lesbarkeit erhöhen soll. Die entstandene Dokumentation soll für
Menschen mit einem Grundlegenden Verständnis von Elektronik sowie der Hardware-
Beschreibungssprache VHDL verständlich sein.

This diploma thesis deals with the operation of processors and their orrespon-
ding peripherials in modern andd traditional forms. It attempts to illustrate the structure
of a computersystem in hard- and software. To reach this goal a RISC-V32I processor
has been implemented in VHDL on a XILINX FPGA as well as some peripherials
bound to the parallel bus. These peripherials include a 2-channel 8-bit Digital to analog
converter as well as a TIA-/EIA-232 compliant serial interface. Due to the common
use of english in the hardware and software engineering field this thesis was written in
english, which should enhance readability as well. The written documentation should
be understandable for everyone with a basic understanding of electronics as well as
the hardware description language VHDL.

Result

The project was fully implemented with all functionality originally targeted. The sys-
tem has been tested and verified and all example code have been documented and
tested as running. Implementations in hardware were made in open-source programs
and the RISC-V processor can compile using an open source toolchain. The comple-
ted project can be found on the USB stick which accompanies this thesis, or in the
git repositories at https://git.it-syndikat.org/tyrolyean/dipl.git and
https://gitlab.com/YARM-project/.

https://git.it-syndikat.org/tyrolyean/dipl.git
https://gitlab.com/YARM-project/

HTL Anichstraße
Biomedizin · Elektronik · Elektrotechnik · Maschinenbau ·Wirtschaftsingenieure

Contents

Gendererklärung ... i

Kurzfassung/Abstract ... ii

Result ... iii

1 Task description.. 1
1.1 Hardware ... 1

2 Hardware peripherials ... 2
2.1 Parallel bus... 2

2.1.1 Address Bus . 2
2.2 Data Bus .. 3
2.3 Control Bus .. 3

2.3.1 Master Reset . 3
2.3.2 Write Not . 3
2.3.3 Read Not . 3
2.3.4 Module Select 1 and 2 Not . 3

2.4 Testing and Measurement ... 4
2.4.1 Measurements . 4
2.4.2 Testing . 4

2.5 Backplane .. 5
2.5.1 Termination resistors . 5

2.6 Case .. 6
2.7 Serial Console .. 8

2.7.1 16550 UART . 8
2.7.2 MAX-232 . 9
2.7.3 Schematics . 9
2.7.4 Demonstration Software . 13

2.8 Audio Digital-Analog-Converter .. 17
2.8.1 TLC 7528 Dual R2R Ladder DAC 18
2.8.2 IDT7201 CMOS FIFO Buffer . 18
2.8.3 Theory verfication . 19
2.8.4 Schematics . 20
2.8.5 Demonstration Software . 23

3 Addressing DACA and DACB... 26
3.1 FPGA to Hardware interface .. 27

3.1.1 Measurement error . 29

4 Textadventure ... 30
4.1 General Implementation details.. 30

Brauns, Plank iv

HTL Anichstraße
Biomedizin · Elektronik · Elektrotechnik · Maschinenbau ·Wirtschaftsingenieure

4.1.1 General definitions and pinout of the AVR 30
4.1.2 Read and Write routines . 32
4.1.3 UART and DAC update polling 32

4.2 DAC sound generation .. 33
4.2.1 DAC modes . 33
4.2.2 Tones and Tracks . 37
4.2.3 Track switching . 42

4.3 User command interpretation... 42
4.3.1 Command structure and parsing 42
4.3.2 Command parameters . 43

4.4 Gameplay... 45
4.5 Memory constraints... 46

5 Erklärung der Eigenständigkeit der Arbeit ... 48

I List of Figures... I

II List of Tables .. I

III Listings .. I

Anhang ... IV

Brauns, Plank v

1 Task description

1.1 Hardware

Due to the recurring questions in the environment of the Hackerspace Innsbruck about
the internal workings of a computer system and the lack of material to demonstrate
these, hardware should be developed for educational purposes. This hardware should
not be to complex to understand but still demonstrate basic tasks of a computer system.
The targeted computing tasks are human interface device controllers, under which a
Digital to Analog ConverterA and a serial console with TIA-/EIA-232 compliant voltage
levels were chosen. For these peripherials schematics and a working implementation
in the hardware building style of the hackerspace should be built. All nescessary hard-
ware will be provided by the Hackerspace. If possible already present hardware should
be used, if impossible new one will be ordered. All schematics should, whenether
possible be written in open-source software such as Kicad or GNU-EDA.

If possible software-examples should be written as well, though the complexity of
these was coupled to the time left to spend on the project. Software should be written
in C, the coding convention is left to the implementer.

AFrom now on reffered to simply as DAC

Daniel Plank Task description 1

2 Hardware peripherials

2.1 Parallel bus

The core part of the hardware is the interface between the microprocessor and the
hardware peripherials. This bus is delivering data in parallel and is therefore named
the “parallel bus“. This bus has 3 different sub-parts:

1. The address bus

2. The data bus

3. The control bus

This split is common in many computer architectures and bus systems used by
various microprocessor manufacturers. In figure i the layout of the Atari Parallel Bus
Interface is shown as used on the Atari 800XL.

Figure i: Atari PBI Pinout;Source: https://www.atarimagazines.com

2.1.1 Address Bus

The address bus contains the nescessary data lines for addressing the individual reg-
isters of the Serial connection and the uart. On any modern system this bus is from 16
to 64 bits wide. For our implementation the bus size was chosen to be 8 bit, which is
multiple times the amount of needed address space, but is the smallest addressable

Daniel Plank Hardware peripherials 2

https://www.atarimagazines.com

unit on most microcontroller architectures and therefore easy to program with. The
address bus is unidirectional.

2.2 Data Bus

The data bus contains the actual data to be stored to and read from registers. The data
bus is, as well on most systems a multiple of 16 bits wide, but for the same reasons as
the data bus, was shrunk down in our case to 8 bits. The data bus is bidirectional.

2.3 Control Bus

Control bus is a term which referes to any control lines (such as read and write lines
or clock lines) which are neither address nor data bus. The control bus in our case
needed to be 5 bits wide and consists of:

• MR ... Master Reset

• ¬WR ... Write Not

• ¬RD ... Read Not

• ¬MS1 ... Module Select 1 Not

• ¬MS2 ... Module Select 2 Not

2.3.1 Master Reset

A high level on the MR lane signals to the peripherials that a reset of all registers and
states should occure. This is needed for the serial console and the dac.

2.3.2 Write Not

A low level on the ¬WR lane signals the corresponding modules that the data on the
data bus should be written to the register on the address specified from the address
bus.

2.3.3 Read Not

A low level on the ¬RD lane signals the corresponding modules that the data from the
register specified by the address on the address bus should be written to the data bus.

2.3.4 Module Select 1 and 2 Not

A low level on one of these lines signals the corresponding module that the data on
address data and the control lines is meant for it.

Daniel Plank Data Bus 3

2.4 Testing and Measurement

For functional testing and verification of implementation goals, measurements needed
to be performed invarious different ways and testing software was required.

2.4.1 Measurements

Measurements were performed, if not noted otherwise, with the Analog Discovery 2
from Digilent as it has 16bit digital I/O Pins as well a a Waveform generator and 2 dif-
ferential oszilloscope inputs[1]. These were for all nescessary measurements enough.
Though due to the size and construction of the device, which can be seen in figure
ii errors wer encountered while performing the measurements. These are noted on
occurance.

Figure ii: Digilent Analog Discovery 2;Source: https://www.sparkfun.com/

2.4.2 Testing

All testing was performed with an Atmel ATMega2560 due to it’s large amount of I/O
pins, 5V I/O which is the more common voltage level on CMOS peripherials, way of
addressing pins (8 at a time) and availability. [2] All testing software was written for this
ATMega and compiled using the avr-gcc from the GNU-Project.

Daniel Plank Testing and Measurement 4

https://www.sparkfun.com/

2.5 Backplane

To connect the modules to the microprocessor, many pins need to be connected
straight through. For this purpose a backplane was chosen where DIN41612 con-
nectors can be used. These connectors were chosen for their large pin count (96 pins)
and their availability. The backplane connects all 96-pins straight through. With the 6
outer left and right pins connected for VCC and ground, as can be seen in figure iii.

Figure iii: Layout of the DIN41612 Connectors on the Backplane

2.5.1 Termination resistors

In constrast to other systems using this backplane, no termination resistors were used.
This makes the bus more prone to refelctions, however these were not a problem during
development with the maximum transmission rate of 1MHz, as can be seen in the
sample recording in figure iv

Daniel Plank Backplane 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·10−6

0

2

4

Time

Vo
lta

ge
on

M
S

1

Figure iv: Measurement at around 1MHz bus clock on MS1

The ripple seen in figure iv are most likely due to the sample rate of the Oszillo-
scope, which is around 10Mhz after an average filter has been applied. The measure-
ment was performed on the finished project, with all cards installed.

2.6 Case

The case for the backplane was provided by the hackerspace, and is meant for instal-
lation in a rack. The case is meant for installation of cards in the EUROCARD format,
therfore all modules were built by this formfactor.

Daniel Plank Case 6

Figure v: The case with installed backplane

Daniel Plank Case 7

2.7 Serial Console

One core part of any computer systems is it’s way to get human input. On older sys-
tems, and even today on server machines, this is done via a serial console. On this
serial console, characters are transmitted in serial, which means bit by bit over the
same line. The voltage levels used in these systems vary from 5V to 3.3V or +-10V.
The most common standart for these voltage levels is the former RS-232B or as it
should be called now TIA-C/EIA-D232. Voltage- levels as per TIA-/EIA Standard are
not practical to handle over short distances to handle however, so other voltages are
used on most interface chips and need to be converted.

2.7.1 16550 UART

The 16550 UARTE is a very common interface chip for serial communications. It pro-
duces 5V logic levels as output on TX and needs the same as input on RX. Thoug
common for a UART, these voltage levels need to be converted to TIA-/EIA-232 levels
for a more common interface.

The 16550 UART is, in it’s core a 16450 UART, but has been given a FIFO F buffer.
It needs three address lines, and 8 data lines, which can be seen in figure vi

Figure vi: PC-16550D Pinout[3]

In figure vi the most important lanes are the SIN and sout lanes, as they contain the
serial data to and from the 16550 UART.

BRS... Recommended Standard
CTIA...Telecommunications Industry Association
DEIA.. Electronic Industries Alliance
EUinversal Asynchronous Receiver and Transmitter
FFirst-In First-Out

Daniel Plank Serial Console 8

2.7.2 MAX-232

To convert the voltage levels of the 16550 UART to levels compliant wit TIA-/EIA-232
levels, the MAX-232 is used. It has two transmitters and two receivers side and gener-
ates the needed voltage levels via an internal voltage pump[4].

2.7.3 Schematics

Based on the descriptions in the datasheets the schematic in figure vii was developed.

Daniel Plank MAX-232 9

Figure vii: The schematic of the UART Module

Daniel Plank Schematics 10

Element Description The quartz oszillator Y1 is the clock source for the Baud Rate
generation and was chosen with 1.8432 MHz for availability reasons and because it
is the lowest ozillator from which all common baud rates can still be derived from [3].
Resistors R1 and R2 are for stability and functionality of the Oszillator nescessary as
per datasheet. The resulting frequency can bemeasured via J1, the measurement can
be seen in viii. C1 is used to stabilize the voltage for the 16550 UART and is common
practice. Via JP1 the UART can be transformed into a USRT where the receiver is
synchronized to the transmitter via a clock line. This mode has, however, not been
tested, and the clock needs to be 16 times the receiver clock rate[3]. The final output
of the 16550 UART can be used and measured via J2, as shown in figure ix . Before
the UART on J2 can be use however, the Jumpers JP2 and JP3 need to be removed as
otherwise the MAX-232 will short out with the incoming signal. capacitors C4, C6, C7,
C7 and C8 are for the voltage pump as defined in the datasheet[4]. R4 and R5 have
been suggested by the supervisor in order toavoid damage to the MAX-232. The RJ-45
plug is used to transmit the TIA-/EIA-232 signal, rather than the more common D-SUB
connector, because the RJ-45 connector fits on a 2.54mm grid. The Pinout onthe RJ-
45 plug can be seen in figure x. C5 has the same functionality for the MAX-232 as the
C1 has to the 16550-UART.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·10−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Time

Q
ua

rt
z

Vo
lta

ge

Figure viii: Measurement of the 1.8432 MHz Output on J1

Daniel Plank Schematics 11

−4 −3 −2 −1 0 1 2 3 4 5 6
·10−4

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time

La
ne

Vo
lta

ge
TIA-/EIA-232 level

UART level

Figure ix: Measurement of a character transmission before and after MAX-232

Figure x: Pinout of the RJ-45 Plug; Src: https://www.wti.com/

Daniel Plank Schematics 12

https://www.wti.com/

2.7.4 Demonstration Software

To demonstrate the functionality and prove, that the schematic has no underlying error,
a program which regularly transmits a character was written as well as a simple echo
program, which transmits all received characters. Both programs transmit 8 bit charac-
ters without parity at 38400 Baud. The output for program one can be seen in figure ix
and the output for program two in figure xi.

−3 −2 −1 0 1 2 3 4 5 6 7 8 9
·10−4

−6

−4

−2

0

2

4

6

Time

La
ne

Vo
lta

ge

RX
TX

Figure xi: Measurement of a character echo

Transmit code The transmit code regularly transmits the letter capital A via the
16550 UART, but before it can do this it needs to perform some initialisations. The
functions shown in listing I are the read and write routines for accessing the 16550
UART. These routines also apply to the echo code.� �

1 #define F_CPU 16000000UL

2

3 #include <stdint.h>

4 #include <util/delay.h>

5

6 #define BUS_HOLD_US 1

7

8 /* Shift values inside the PORTL Register */

Daniel Plank Demonstration Software 13

9 #define WR_SHIFT 1

10 #define RD_SHIFT 2

11 #define MR_SHIFT 0

12 #define CS_SHIFT 3

13 #define CS_ADC_SHIFT 4

14

15 /* Registers in the 16550 UART */

16

17 #define UART_REG_DLLS 0

18 #define UART_REG_DLMS 1

19 #define UART_REG_TXRX 0

20 #define UART_REG_IER 1

21 #define UART_REG_IIR 2

22 #define UART_REG_LCR 3

23 #define UART_REG_MCR 4

24 #define UART_REG_LSR 5

25 #define UART_REG_MSR 6

26 #define UART_REG_SCR 7

27

28 void set_addr(uint8_t addr){

29

30 PORTK = addr;

31 return;

32 }

33

34 void write_to_16550(uint8_t addr, uint8_t data){

35

36

37 set_addr(addr);

38 DDRF = 0xFF;

39 PORTL &= ~(1<<WR_SHIFT);

40 PORTF = data;

41 PORTL &= ~(1<<CS_SHIFT);

42

43 _delay_us(BUS_HOLD_US);

44

45 PORTL |= 1<<CS_SHIFT;

46 set_addr(0x00);

47 PORTL |= 1<<WR_SHIFT;

48 PORTF = 0x00;

49 return;

50 }

51

52 uint8_t read_from_16550(uint8_t addr){

53

54 uint8_t data = 0x00;

55 set_addr(addr);

Daniel Plank Demonstration Software 14

56 DDRF = 0x00;

57 PORTF = 0x00;

58 PORTL &= ~(1<<RD_SHIFT);

59 PORTL &= ~(1<<CS_SHIFT);

60 _delay_us(BUS_HOLD_US);

61 data = PINF;

62 PORTL |= 1<<CS_SHIFT;

63 set_addr(0x00);

64 PORTL |= 1<<RD_SHIFT;

65 DDRF = 0xFF;

66 PORTF = 0x00;

67 _delay_us(BUS_HOLD_US); /*Wait for the data and signal lanes to become

stable*/

68 return data;

69 }
� �
Listing I: Read and write routines for the 16550 UART

To write to the 16550 UART, you need to perform some setup tasks. After startup, it
requires a MR for at least 5ţs[3]. The baud rate divisor latch needs to be set to the
specified divisor for the desired baud rate, and the character width and parity control
needs to be set. The MR signal is beeing generated by the AVR on bootup. To access
the divisor latch, the divisor latch access bit needs to be set and after setting up the
baud rate divisor latch, it nees to be cleared to allow a regular transmission. This
process can be seen in listing II� �

1 int main(){

2

3 /* Disable interrupts during initialisation phase */

4 cli();

5

6 /* Setup Data Direction Registers and populate with sane default

7 values */

8 DDRF = 0xFF; /* Data Bus */

9 DDRK = 0xFF; /* Address Bus */

10 DDRL = 0xFF; /* Control Bus */

11 PORTF = 0x00;

12 PORTK = 0x00;

13 PORTL = 0x00;

14

15 /* Cleanly reset the 16550 uart */

16 PORTL |= (1<<WR_SHIFT);

17 PORTL |= (1<<RD_SHIFT);

18 PORTL |= (1<<CS_SHIFT);

19 PORTL |= (1<<MR_SHIFT);

20 _delay_us(100);

21 PORTL &= ~(1<<MR_SHIFT);

Daniel Plank Demonstration Software 15

22 _delay_us(1000);

23

24 sei();

25

26 for(;;){

27 write_to_16550(UART_REG_LCR,0x83);

28 write_to_16550(UART_REG_DLLS,0x03);

29 write_to_16550(UART_REG_DLMS,0x00);

30 write_to_16550(UART_REG_LCR,0x03);

31 write_to_16550(UART_REG_TXRX,’A’);

32 _delay_us(10000);

33 }

34

35 return 0;

36 }
� �
Listing II: 16550 INIT routines and single char transmission

The output of this code on the address, data and control bus as well as on the
SOUT lane of the 16550 UART can be seen in figure xii

Figure xii: Transmission of character A via the 16550 UART

Echo code The echo code permanently polls the 16550 UART wether a character
has been received, and if yes, reads it from the receiver holding register andwrites it
back to the tx holding register. The output of this code can be seen in figure xi. The
initialisation is practically the same as for the transmission code, as well as the read
and write routines in listing I.� �

1 int main(){

Daniel Plank Demonstration Software 16

2

3 /* Disable interrupts during initialisation phase */

4 cli();

5

6 /* Setup Data Direction Registers and populate with sane default

7 values */

8 DDRF = 0xFF; /* Data Bus */

9 DDRK = 0xFF; /* Address Bus */

10 DDRL = 0xFF; /* Control Bus */

11

12 /* Cleanly reset the 16550 uart */

13 PORTL |= (1<<WR_SHIFT);

14 PORTL |= (1<<RD_SHIFT);

15 PORTL |= (1<<CS_SHIFT);

16 PORTL |= (1<<CS_ADC_SHIFT);

17 PORTL |= (1<<MR_SHIFT);

18 _delay_us(100);

19 PORTL &= ~(1<<MR_SHIFT);

20 _delay_us(1000);

21

22 write_to_16550(UART_REG_LCR,0x83);

23 write_to_16550(UART_REG_DLLS,0x03);

24 write_to_16550(UART_REG_DLMS,0x00);

25 write_to_16550(UART_REG_LCR,0x03);

26 for(;;){

27 if(read_from_16550(UART_REG_LSR) & 0x01){

28 write_to_16550(UART_REG_TXRX,

29 read_from_16550(UART_REG_TXRX));

30 }

31 }

32

33 return 0;

34 }
� �
Listing III: 16550 character echo

2.8 Audio Digital-Analog-Converter

A digital to analog converter takes a digital number and converts it to a analog signal.
The output of one such conversion is called a sample. With enough samples per
second various different waveforms can be produced which, when amplified and put
onto a speaker, can be heared by the human ear as a tone. With various tones in
series a melody can be produced, which is what the DAC in this implementation does.

Daniel Plank Audio Digital-Analog-Converter 17

2.8.1 TLC 7528 Dual R2R Ladder DAC

The TLC 7528 is a Dual output Parallel input R2R Ladder DAC with a maximum sample
rate of 10MHz[5] and which (should be) is monotonic over the entire D/A Conversion
Range. The TLC-7528 was the only component chosen, where availability was not
a factor, but rather due to it’s design.It is the cheapest dual R2R Ladder dac which
takes PARALLEL input, which was an important feature, because the backbone of
the project is its parallel bus. Further the DAC was developed for audio aplications[5]
obvious and the TLC-7528 was the only IC available as DIP G, of which the pinout can
be seen in figure xiii

Figure xiii: TLC-7528 Pinout[5]

2.8.2 IDT7201 CMOS FIFO Buffer

The IDT7201 is an asychronous CMOS FIFO, which means that it can be read with
a completely independant speed from which it is written and vice versa. It has 9 bit
words, which can be seen in figure xiv, and can store up to 256 words[6]. It is used
as a buffer to store data describing the targeted waveform in order to free time on the
parallel bus for interaction with the 16550 UART.

GDIP... Dual Inline Package

Daniel Plank TLC 7528 Dual R2R Ladder DAC 18

Figure xiv: IDT-7201 Pinout[6]

2.8.3 Theory verfication

Before tests of the complete unit were conducted, the functionality of the device and the
validity of the knowledge of operations were performed. For that the DAC was directl
connected to the ATMega without the FIFO infront of it. A saw was generated on only
the DACA channel, which was put into voltage mode as described in the datasheet[5]
and seen in figure xv. After the result seen in xvi was found a lot of effort was put
in to determine the source of the heavy noise, however no obvious conclusion can
be made, execpt that it comes from the DAC itself and is consistant over whatever
frequency used. A damaged IC could be the reason or a sloppy production progress.
Filters can be used to reduce the noise, however this was not done in this thesis, as the
generated audio does not seem to suffer from these non-linearities as badly as when
measured standalone.

Daniel Plank Theory verfication 19

Figure xv: TLC-7528 in voltage modet[5]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
·10−4

0

0.5

1

1.5

2

Time

R
E

FA
Vo

lta
ge

Figure xvi: Measurement of a generated SAW signal via the TLC7528

2.8.4 Schematics

Based on the descriptions in the datasheets the schematic in figure xvii was developed.

Daniel Plank Schematics 20

Figure xvii: The schematic of the DAC Module

Daniel Plank Schematics 21

Element Description Diodes D1 through D4 are used as OR-Gates in conjunction
with R1 and R2 to generate the ¬MODRD and ¬MODWR signals for the D Flip-Flop
H and FIFO respectively, by these formulas:
¬MODRD = ¬RD ∨ ¬MS2
¬MODWR = ¬WR ∨ ¬MS2
On a read access, the output enable of the D-Latch becomes low, which writes the

status bits of the FIFO onto the data bus. C1, C2 and C3 are for stability reasons
and are good practice, similar to the UART module. 74HC00 is a quad NAND-Gate[8]
which is only used for inversion, chosen, like the 74HC374, for availability reasons.
The A part of the NAND-Gate inverts the MR signal from the bus to a ̸M R signal as
the FIFOs reset is low active. The B part of the NAND-Gate inverts the FIFO Empty
flag. It’s output is connected to the ¬WR input of the DAC, which means that the DAC
doesn’t convert the input anymore, if the FIFO Empty flag is set to low.

The NE555 generates the audio clock signal, which should be the double of
44.1kHzI as 44.1kHz is the standard samling rate of CD-Audio[9]. Resistors R9 and
R10 togehter with C7 form the Oscillator part of the NE55. C4 is for stability reasons
and doesn’t define the frequency of the oscillator.

The generated clock is used for the ¬R of the FIFO and inverted on the DAC, which
makes the data available on the output before being stored into the DAC as it receives
the signal to store the data after the FIFO makes it available on the bus.

The DAC is operated in voltage mode as described in xv, with it’s voltage source
beeing available at either 3.472Vpp for professional audio or 0.894Vpp for consumer
audio, as defined per convention.[10] The voltage source can be controlled via Jumper
JP1.

C5 and C6 together with the load resistance on the audio jack form a high pass with
a cutoff frequency of

fC =
1

2πRC =
1

2×π×10KΩ×100µF = 0.159154943Hz
which should cover the hearable spectrum. The high pass was needed to generate

a positive and negative half of the wave form, as the DC-Offset with a frequency of 0Hz
is orders of magnitudes lower than the fC of the highpass gets filtered away.

R7 and R8 have been installed in order to unload the capacitors after device
poweroff.

NE55 Clock Source Though used as a clovk source, the NE555 is a bad clock source
if a stable clock is needed, because it varies widely with temperature, preasure and
aging elements. A better solution would have been a quartz which is divided down to
the desired frequency, whichwas what CD Drives used to do, but more commonly in

H74HC374[7]
IBecause we have 2 output channels

Daniel Plank Schematics 22

modern CD Drives, an ASIC with internal PLL is used, thus the required quartz can no
longer be sourced.

2.8.5 Demonstration Software

SAW Generator To prove read and write access from the D Flip-Flop and the FIFO
are working, the same saw signal has been generated as in figure xvi , however the
signal was put into the FIFO and not the DAC directly. The resulting saw wave can
be seen in figure xviii together with the FIFO Empty flag. The FIFO Empty flag, as
explained before, is inverted and starts/ends the complete D/A conversion, until further
data is received.

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
·10−2

0

1

2

3

4

5

Time

R
E

FA
Vo

lta
ge

REFA
¬EF

Figure xviii: Measurement of a generated SAW signal with the FIFO Empty flag

The time difference betwen a stor and complete write cycle can be seen in figure
xx, while the figure xix shows the transmission between dac and fifo in more detail.

Daniel Plank Demonstration Software 23

Figure xix: A transmission between the FIFO and the DAC

Figure xx: A fifo store operation in contrast to the load operation

The initialisation routines and read/write operations for the DAC module are basi-
cally the same as for the UART module, and have thus been ommitted. They can be
seen in listing II and partially in listing II.� �

1 int routine(){

2

3 for(uint8_t i = 0; i < 0xFF; i++){

Daniel Plank Demonstration Software 24

4 write_to_dac(0x00, i);

5 }

6

7 write_to_dac(0x00, 0x00);

8

9 _delay_ms(10);

10 return 0;

11 }
� �
Listing IV: SAW Generation for the DAC with FIFO

Sine Generator As a further example a sine was generated and played on the DAC.
The ATMega itself is not powerful enough to generate the sine on the fly, therefore
a lookup-table had to be generated, which can be seen in listing V. How the data is
transmitted to the FIFO can be seen in listing VI and figure xxi and the resulting sine
on both output channels can be seen in figure xxii.� �

1 /* Generate sine table */

2 uint8_t sine_table[256];

3 for(size_t i = 0; i < 256; i++){

4 sine_table[i] = 0xFF&((int)((sin(i/((double)255)*(3.141592*2))*
5 127.5+127.5)));

6 }
� �
Listing V: Sine LUT Generation

The look-up table has a size of 256, which is the maximum value an 8 bit integer
can take. This size was chosen to make operation faster as it only takes one cycle to
load an array value into a register and another one to store it into the GPIO register.
The sine table in further examples was pre-genrated on the compiling host to reduce
startup time. The mothod shown in listing V is not fast due to the lack of a floating point
unit on the AVR. [2]� �

1 int routine(){

2

3 for(uint8_t i = 0; i < 0xFF; i++){

4 write_to_dac(i%2, sine_table[i]);

5 }

6

7 write_to_dac(0x00, 0x00);

8 write_to_dac(0x01, 0x00);

9

10 _delay_ms(10);

11 return 0;

12 }
� �
Listing VI: DAC Sine Generation

Daniel Plank Demonstration Software 25

Figure xxi: Storage and retrieval of a sine to and from the FIFO

−1.6−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·10−3

−1

0

1

2

Time

C
ha

nn
el

Vo
lta

ge

DACA
DACB

Figure xxii: Measuremet of the generated sine from the sine LUT on DACA and DACB

3 Addressing DACA and DACB

The DAC used has 2 output channels which can be selected by the ¬DACA/DACB pin
as seen in figure xiii. This pin was mapped to bit 0 of the address bus in order to make
use of it. Bit 8 on the fifo was used to store the bit. It was not implemented with half the
bus clock to make both channels independent of each other. This however uses more

Daniel Plank Addressing DACA and DACB 26

time on the backend because it means the fifo is used up at twice the speed. No current
example makes use of this, but it may be used in future examples and implementations
on this unit.

On the audio jack DACA is mapped to the right channel and DACB to the left chan-
nel.

3.1 FPGA to Hardware interface

To make the Hardware work with the FPGA’s 3.3V I/O, level shifter have been installed
and a FPGA module was built. This module maps the IO/Pins in a similar way to
the ATMega 2560 used in examples before. The bidirectional 5V<->3.3V logic level
converters have been obtained on amazon, and have not been well documented. Their
functionality has been tested and verified in both directions, which can be seen in
figures xxiii and xxiv. The schematic has also been determined through measurements
with a multimeter and the schematic in figure xxv shows similar resistor values in the
same configuration [11].

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·10−6

−1

0

1

2

3

4

5

Time

La
ne

Vo
lta

ge

LV-Side
HV-Side

Figure xxiii: 3.3V to 5V conversion using the level shifter

The in figure xxiii shown output on the HV side, corresponds with the schematics in
figure xxv where it can be seen that the resistor R2 is loading the bus capacitance to a

Daniel Plank FPGA to Hardware interface 27

5V high state.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
·10−6

−1

0

1

2

3

4

5

6

Time

La
ne

Vo
lta

ge

LV-Side
HV-Side

Figure xxiv: 5V to 3.3V conversion using the level shifter

Daniel Plank FPGA to Hardware interface 28

Figure xxv: The internal schematics of the level shifter[11]

3.1.1 Measurement error

During an attempt to measure wether the level shifters in the final module were working,
a measurement between the LV and the HV side showed only a difference of 0.7V. After
some troubleshooting, it was found that the Analog Discovery has clamping diodes
against the 3.3V rail shown in figure xxvi. These diodes produce the 0.7V offset and
prevent the parallel bus from rising to 5V when a digial I/O pin of the Analog Discovery
2 is connected to the bus. [12].

Daniel Plank Measurement error 29

Figure xxvi: The internal clamping diodes of the Analog Discovery 2[1]

4 Textadventure

To illustrate how the components work together and can be used in various different
applications, a small text-adventure with audio effects was written in C. The main goal
was to show the capabilities of even small systems like the one developed.

4.1 General Implementation details

4.1.1 General definitions and pinout of the AVR

Like the before examples, the textadventure was implemented on an ATMega2560 and
uses 3 different Registers for transmission: PORTF, PORTK and PORTL for address
bus, data bus and control bus respectively, as can be seen in listing VII� �

1 /* Copyright (C) 2020 tyrolyean

2 *
3 * This program is free software: you can redistribute it and/or modify

4 * it under the terms of the GNU General Public License as published by

5 * the Free Software Foundation, either version 3 of the License, or

6 * (at your option) any later version.

7 *
8 * This program is distributed in the hope that it will be useful,

9 * but WITHOUT ANY WARRANTY; without even the implied warranty of

10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

Daniel Plank Textadventure 30

11 * GNU General Public License for more details.

12 *
13 * You should have received a copy of the GNU General Public License

14 * along with this program. If not, see <http://www.gnu.org/licenses/>.

15 */

16

17 #ifndef _AVR_H_TEXT

18 #define _AVR_H_TEXT

19

20

21

22 #define F_CPU 16000000UL

23 #include <avr/io.h>

24

25 /* Shift values for the peripherials on the control bus PORTL */

26

27 #define MR_SHIFT 0

28 #define WR_SHIFT 1

29 #define RD_SHIFT 2

30 #define CS_UART_SHIFT 3

31 #define CS_DAC_SHIFT 4

32

33 #define ADDR_REG PORTK

34 #define DATA_REG PORTF

35 #define CTRL_REG PORTL

36

37 #define ADDR_DDR_REG DDRK

38 #define DATA_DDR_REG DDRF

39 #define CTRL_DDR_REG DDRL

40

41 /* Included here to prevent accidental redefinition of F_CPU */

42 #include <util/delay.h>

43

44 /* Time it takes for the bus lanes to become stable for read and write

access */

45 #define BUS_HOLD_US 1

46

47 void set_addr(uint8_t addr);

48

49 #endif
� �
Listing VII: The avr.h header file

The in listing VII shown preprocessor macros MR_SHIFT, WR_SHIFT, RD_SHIFT,
CS_UART_SHIFT and CS_DAC_SHIFT are used to indicate the position of the cor-
responding control lines inside the control bus register. All other shift values are the
same bitordering in input as in output.

Daniel Plank General definitions and pinout of the AVR 31

The BUS_HOLD_US is used to tell the avr how many microsecons it takes for the
data bus to be latched into input register of the devices on write or how long it takes
for the data bus to become stable on read. A delay of less than 1 microsecond is not
possible due to limitations of the AVR and the bus capacity, which increases the BERJ

to a level which effects regular operation.

4.1.2 Read and Write routines

The set_addr function is the same as in the UART example code in listing I and has
therefore been omitted, execept for its definiton in the avr.h file in listing VII. The read
and write functions for the UART module and the DAC module are the same as in the
example code for the modules and have been ommited therefore as well.

4.1.3 UART and DAC update polling

The AVR constantly polls the DAC and UART modules for updates as can be seen in
listing VIII. The routine_MODULE functions poll their respective modules for updates
as can be seen in listings IX and X. When a character is received, it is stored inside
a bufer array and regular operation continues. If the ¬EF status bit is set in a read
from the dac, the feed_dac function is called which stores 256 bytes into the DAC and
regular operation continues.� �

1

2 int routine(){

3 routine_dac();

4 routine_uart();

5 routine_game();

6 return 0;
� �
Listing VIII: The routine function looped by the main� �

1 void routine_uart(){

2

3 uint8_t received = read_from_uart(UART_REG_LSR);

4 if(received & 0x01){

5 received = read_from_uart(UART_REG_TXRX);

6 ingest_user_char(received);

7 if(received == ’\r’){

8 writechar_16550(’\n’);

9 }

10 writechar_16550(received); /* Echo back */

11 }

12

13 return;

JBER...Bit Error Ratio

Daniel Plank Read and Write routines 32

14 }
� �
Listing IX: The routine function for the UART� �

1 void routine_dac(){

2

3 uint8_t received = read_from_dac(0x00);

4 if(!(received & (0x01<<0))){

5 feed_dac();

6 }

7 return;

8 }
� �
Listing X: The routine function for the DAC

4.2 DAC sound generation

4.2.1 DAC modes

The DAC can produce any waveform described by 8 bit unsigned PCM code. Though
possible to feed predefined waveforms into the DAC, the AVR doesn’t have enough
onboard memory to store more than a few seconds of these waveforms.

For example to store one second of 8 bit unsigned PCM Code at 2 times 44.1KHz
sampling rate of the DAC, the AVR would have to store s = 2 × 44100Bytes

s ∗ 1s = 2 ×
44100Bytes = 88.2KB, but it has only a total of 256KB of onboard flash[2] which makes
for a total track lengh of t = 256KB

88.2 KB
s
= 2.9s with only one track.

Therefore the AVR generates the audio on runtime. To do that it has 6 builtin modes
in which it can run, as can be seen in listing XI:

1. silent mode: The DAC produces no output at all and is completely silent.

2. sine mode: The DAC produces a sine with a specific frequency and an amplitude
of 255.

3. square mode: The DAC produces a square wave with a specific frequency and
an amplitude of 255.

4. saw mode: The DAC produces a saw wave with a specific frequency and an
amplitude of 255.

5. noise mode: The DAC produces a pseudo-random white-noise with a maximum
amplitude of 255.

6. triangle mode: The DAC produces a triangle wave with a specific frequency and
an amplitude of 255.

Daniel Plank DAC sound generation 33

To perform these tasks the DAC takes two parameters, again seen in listing XI:

• A frequency deviation: Used to tell the dac how much the desired frequency
deviates from the base frequency of each waveform.

• A mode: Used to tell it which waveform to generate� �
1 /* The operation modes of the dac used for generation of different tones */

2 #define DAC_MODE_SILENT 0

3 #define DAC_MODE_SINE 1

4 #define DAC_MODE_SQUARE 2

5 #define DAC_MODE_SAW 3

6 #define DAC_MODE_NOISE 4

7 #define DAC_MODE_TRIANGLE 5

8

9 extern uint8_t dac_mode;

10 /* This variable is used to deviate the frequency from the baseline

frequency

11 * of around 1kHz. If this integer is positive it makes the produced

waveform

12 * longer, if it is negative the produced waveform becomes less sharp, but

the

13 * frequency goes up. 0 is the baseline */

14 extern int16_t dac_frequency_deviation;
� �
Listing XI: The DAC operation modes� �

1 void feed_dac(){

2 /* Internal counter for positioning inside the currently playing

3 * waveform */

4 static uint8_t threash = 0x00;

5 /* Used to generate the desired frequency offset if the waveform should

6 * be made "longer" --> the frequency made lower from baseline

7 */

8 static int16_t freq_delay_cnt = 0x00;

9 switch(dac_mode){

10

11 default:

12 case DAC_MODE_SILENT:

13 for(uint8_t i = 0; i < 0xFF; i++){

14 write_to_dac(i%2, 0);

15 }

16

17 break;

18

19 case DAC_MODE_SINE:

20 /* Generates a sine from a predetermined sine table in program

Daniel Plank DAC modes 34

21 * space */

22 for(uint8_t i = 0; i < (0xFF/2); i++){

23 write_to_dac(1,

24 pgm_read_byte(&sine_table[threash]));

25 write_to_dac(0,

26 pgm_read_byte(&sine_table[threash]));

27

28 if(dac_frequency_deviation >=0){

29 freq_delay_cnt++;

30 if(freq_delay_cnt >=

31 dac_frequency_deviation){

32 freq_delay_cnt = 0;

33 threash++;

34

35 }

36

37 }else{

38 threash -= dac_frequency_deviation;

39 }

40

41 }

42 break;

43 case DAC_MODE_SQUARE:

44 /* Generates a square wave tone */

45 for(uint8_t i = 0; i < (0xFF/2); i++){

46 if(threash > (0xFF/2)){

47 write_to_dac(0, 0xFF);

48 write_to_dac(1, 0xFF);

49 }else{

50 write_to_dac(0, 0);

51 write_to_dac(1, 0);

52 }

53 if(dac_frequency_deviation >=0){

54 freq_delay_cnt++;

55 if(freq_delay_cnt >=

56 dac_frequency_deviation){

57 freq_delay_cnt = 0;

58 threash++;

59

60 }

61

62 }else{

63 threash -= dac_frequency_deviation;

64 }

65 }

66 break;

67 case DAC_MODE_SAW:

Daniel Plank DAC modes 35

68 /* Generates a saw wave tone */

69 for(uint8_t i = 0; i < (0xFF/2); i++){

70 write_to_dac(0, threash);

71 write_to_dac(1, threash);

72 if(dac_frequency_deviation >=0){

73 freq_delay_cnt++;

74 if(freq_delay_cnt >=

75 dac_frequency_deviation){

76 freq_delay_cnt = 0;

77 threash++;

78

79 }

80

81 }else{

82 threash -= dac_frequency_deviation;

83 }

84 }

85 break;

86 case DAC_MODE_NOISE:

87 /* Generates white noise from a predetermined LUT

88 */

89 for(uint8_t i = 0; i < (0xFF/2); i++){

90 static uint16_t noise_cnt = 0;

91 write_to_dac(1,

92 pgm_read_byte(&noise_table[noise_cnt]));

93 write_to_dac(0,

94 pgm_read_byte(&noise_table[noise_cnt]));

95

96 noise_cnt++; /* Doesn’t have frequency diversion

97 */

98 if(noise_cnt >= 1024){

99 noise_cnt = 0;

100 }

101

102 }

103 break;

104 case DAC_MODE_TRIANGLE:

105 /* Generates a triangle wave tone */

106 for(uint8_t i = 0; i < (0xFF/2); i++){

107 static int8_t direction = 1;

108 if((threash == 0xFF) | !threash){

109 direction = -direction;

110 }

111 write_to_dac(0, threash);

112 write_to_dac(1, threash);

113 if(dac_frequency_deviation >=0){

114 freq_delay_cnt++;

Daniel Plank DAC modes 36

115 if(freq_delay_cnt >=

116 dac_frequency_deviation){

117 freq_delay_cnt = 0;

118

119 threash += direction;

120

121 }

122

123 }else{

124 if((dac_frequency_deviation *
125 direction) >

126 (0xFF - threash)){

127 threash = 0xFF;

128 continue;

129 }

130 threash = (dac_frequency_deviation *
131 direction);

132 }

133 }

134 break;

135 }

136

137 return;

138 }
� �
Listing XII: The DAC waveform generation code

4.2.2 Tones and Tracks

A sound track inside the textadventure consists of independent tones. A tone is a
waveform at a specific frequency played for a specific time. To perform the specific time
functionality independant of DAC speed, an ISR K on the AVR was used to change to
the next tone every millisecond. A track is an array of tones with an end marker tone at
the end which is a tone with a length of 0ms. The end marker tone tells the ISR to reset
to the initial tone. The ISR can be seen in listing XIII and the sound update function,
which actually updates the current tone and is responsible for playing a track in listing
XIV. The output of an example track can be seen in figures xxvii and xxviii.� �

1 ISR(TIMER0_COMPA_vect)

2 {

3 update_sound();

4 }
� �
Listing XIII: The ISR which fires every millisecond

KISR...Interrupt Service Routine

Daniel Plank Tones and Tracks 37

� �
1 /* Loops a track indefinitely and changes voices according to predefined

tables.

2 * A new track resets the internal state. A voice with a length of 0ms is

used

3 * to mark the end of a track and continue at the beginning

4 */

5 void update_sound(){

6

7 static uint16_t audio_time = 0;

8 static size_t tone_pointer = 0x00;

9 static struct tone_t current_tone = {DAC_MODE_SILENT, 0,0};

10 if(current_track == NULL){

11 /* ABORT */

12 audio_time = 0x00;

13 return;

14 }

15 audio_time++;

16 static const struct tone_t * old_track = NULL;

17

18 if(audio_time >= current_tone.length ||

19 current_track != old_track){

20

21 if(old_track != current_track){

22 tone_pointer = 0;

23 audio_time = 0x00;

24 old_track = current_track;

25 }

26 memcpy_P(¤t_tone,&(current_track[tone_pointer]),

27 sizeof(current_tone));

28

29 if(current_tone.length == 0){

30 tone_pointer = 0;

31 memcpy_P(¤t_tone,&(current_track[tone_pointer]),

32 sizeof(current_tone));

33

34 }

35

36 dac_mode = current_tone.waveform;

37 dac_frequency_deviation = current_tone.frequency_deviation +

38 global_frequency_offset;

39 audio_time = 0x00;

40 tone_pointer++;

41 }

42 return;

43 }

Daniel Plank Tones and Tracks 38

� �
Listing XIV: The sound update function

Daniel Plank Tones and Tracks 39

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35
−0.5

−0.48

−0.46

−0.44

−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

−0.28

−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−8 · 10−2

−6 · 10−2

Track output

Ti
m

e

DACA
DACB

Figure xxvii: The output of an example track part 1

Daniel Plank Tones and Tracks 40

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Track output

Ti
m

e
DACA
DACB

Figure xxviii: The output of an example track part 2

Daniel Plank Tones and Tracks 41

4.2.3 Track switching

To switch tracks on different actions, there is a map of tracks associated with rooms.
Every room has an associated track, where the association can change on actions
performed, which allows for a game atmosphere change. Track changes are performed
outside the ISR, which could theoretically result in a race condition where the ISR would
load a faulty track for 1ms if the track change was not performed fast enough, but this
is prevented by disabling global interrupts during a track change.

4.3 User command interpretation

4.3.1 Command structure and parsing

As in other text adventures [13] a command consits of one line of input terminated by
a newline or line feed character \n. The carriage return character which is sometimes
transmitted with a line feed character is not parsed in this text adventure. Incoming
character parsing can be seen in listings IX and XV.

As one command is parsed each part is required to be separated by an empty
space character which is ascii code 32 [14]. The first part of the given input is then
compared to an array of actions a user can perform, for example use or search, as can
be seen in listing XVI

In listing IX the comment echo back can be seen. The write_char function before
it writes the last received character back to the terminal which sent it. This is done to
write what the user typed out to the terminal as otherwise it would not be seen what
has been typed on any VT100 compatiable terminal[15] or terminal emulator.� �

1 void ingest_user_char(char in){

2 if(in == 0x7F /* DELETE CHAR */){

3 command_buffer[command_buffer_pointer--] = 0x00;

4

5 }else{

6 command_buffer[command_buffer_pointer++] = in;

7 }

8 return;

9 }
� �
Listing XV: The character ingest function

The in listing XV shown branch overrides the last received character with 0x00
which is ascii NUL and decrements the buffer pointer by one if the received character
was 0x7F. 0x7F is the ADCII DELETE character [14] which instructs the receiving end
that the last received character was a mistake and should be purged. This is also
what a vt100 compiant terminal emulator sends when the backspace or delete key is
pressed [15].

Daniel Plank Track switching 42

� �
1 void routine_game(){

2

3 if(command_buffer_pointer >= sizeof(command_buffer)){

4

5 command_buffer_pointer = 0x00;

6 memset(command_buffer, 0, sizeof(command_buffer));

7

8 println("\nToo much input!");

9 return;

10 }

11

12 if(command_buffer[command_buffer_pointer-1] == ’\n’ ||

13 command_buffer[command_buffer_pointer-1] == ’\r’){

14 /* A command from the user has been received, we are ready to

15 * do something!*/

16

17 int8_t action_id = -1;

18 for(size_t i = 0; i < sizeof(action_table)/sizeof(const char*);

19 i++){

20 if(strncasecmp(action_table[i], command_buffer,

21 strlen(action_table[i])) == 0){

22 action_id = i;

23 break;

24 }

25

26 }

27 if(action_id < 0){

28 println(info_table[1]);

29 }else{

30 perform_action(action_id);

31

32 }

33

34 command_buffer_pointer = 0x00;

35 memset(command_buffer, 0, sizeof(command_buffer));

36 }

37

38 return;

39 }
� �
Listing XVI: The command parsing function

4.3.2 Command parameters

Command paramters are interpreted as the string that follows the action and the space
behind it. As can be seen in the case for ACTION_USE in listing XVII the use item

Daniel Plank Command parameters 43

function is passed the command bufferL plus the length of the entered command plus
one for the space. So the string starting at the passed address should match the start
address of the parameter. If no parameter is supplied, the address should point to a
character containing ASCII NUL, which marks the end of a string, bcause after comand
parsing the string is overwritten with zeros as seen in listing XVI.� �

1 void perform_action(uint8_t action_id){

2 putchar_16550(’\n’, NULL);

3 switch(action_id){

4 default:

5 case ACTION_HELP:

6 println("You can:");

7 for(size_t i = 0; i < NUM_ACTIONS; i++){

8 println(" %s",action_table[i]);

9 }

10 break;

11

12 case ACTION_DESCRIBE:

13 describe_room(current_room, false);

14 break;

15

16 case ACTION_NORTH:

17 case ACTION_SOUTH:

18 case ACTION_WEST:

19 case ACTION_EAST:

20 move_direction(action_id -1);

21 break;

22 case ACTION_INVENTORY:

23 print_inventory();

24 break;

25 case ACTION_SEARCH:

26 print_room_item();

27 break;

28 case ACTION_TAKE:

29 consume_room_item(command_buffer+

30 strlen(action_table[ACTION_TAKE])+1);

31 break;

32 case ACTION_USE:

33 use_item(command_buffer+

34 strlen(action_table[ACTION_USE])+1);

35 break;

36

37 };

38 println(info_table[3]);

39

Lwhich is an address in memory

Daniel Plank Command parameters 44

40 return;

41 }
� �
Listing XVII: The command execution routine

4.4 Gameplay

The game itself plays like a regular game with limtations set in direction. Playeras can
search for items in each room and grab the found items as can be seen in figure xxix.
The general gamplay is perfomred via altering the map data and the strings output to
the user.

Daniel Plank Gameplay 45

Figure xxix: A regular beginning of the game

4.5 Memory constraints

The AVR has 8kB of internal SRAM which are used for stack and heap [2]. During
the build of the program an ELF file can be obtained which contains infromation on the

Daniel Plank Memory constraints 46

programs structure and memory usage on boot. Strings and variables are contained
within the .data section of the elf file, but loaded into the .bss section during boot[16].
This is done for integer variables, as well as for strings, which makes the use of strings
limited not to the flash size but to the RAM size of the AVR. To save memory, sound
tracks as well as the sine and noise table have been put into program space with the
PROGMEM attribute as described by the avr-libc documentation[17]. In listing XII a
read from program memory can be seen in the noise and sine modes.

Daniel Plank Memory constraints 47

5 Erklärung der Eigenständigkeit der Arbeit

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stel-
len als solche erkenntlich gemacht habe. Meine Arbeit darf öffentlich zugänglich
gemacht werden, wenn kein Sperrvermerk vorliegt.

Ort, Datum Armin Brauns

Ort, Datum Daniel Plank

Brauns, Plank Erklärung der Eigenständigkeit der Arbeit 48

I List of Figures

i Atari PBI Pinout;Source: https://www.atarimagazines.com . . . 2
ii Digilent Analog Discovery 2;Source: https://www.sparkfun.com/ 4
iii Layout of the DIN41612 Connectors on the Backplane 5
iv Measurement at around 1MHz bus clock on MS1 6
v The case with installed backplane . 7
vi PC-16550D Pinout[3] . 8
vii The schematic of the UART Module . 10
viii Measurement of the 1.8432 MHz Output on J1 11
ix Measurement of a character transmission before and after MAX-232 . . 12
x Pinout of the RJ-45 Plug; Src: https://www.wti.com/ 12
xi Measurement of a character echo . 13
xii Transmission of character A via the 16550 UART 16
xiii TLC-7528 Pinout[5] . 18
xiv IDT-7201 Pinout[6] . 19
xv TLC-7528 in voltage modet[5] . 20
xvi Measurement of a generated SAW signal via the TLC7528 20
xvii The schematic of the DAC Module . 21
xviii Measurement of a generated SAW signal with the FIFO Empty flag . . . 23
xix A transmission between the FIFO and the DAC 24
xx A fifo store operation in contrast to the load operation 24
xxi Storage and retrieval of a sine to and from the FIFO 26
xxii Measuremet of the generated sine from the sine LUT on DACA and DACB 26
xxiii 3.3V to 5V conversion using the level shifter 27
xxiv 5V to 3.3V conversion using the level shifter 28
xxv The internal schematics of the level shifter[11] 29
xxvi The internal clamping diodes of the Analog Discovery 2[1] 30
xxvii The output of an example track part 1 40
xxviiiThe output of an example track part 2 41
xxix A regular beginning of the game . 46

II List of Tables

III Listings

I Read and write routines for the 16550 UART 13

Brauns, Plank List of Figures I

II 16550 INIT routines and single char transmission 15
III 16550 character echo . 16
IV SAW Generation for the DAC with FIFO 24
V Sine LUT Generation . 25
VI DAC Sine Generation . 25
VII The avr.h header file . 30
VIII The routine function looped by the main 32
IX The routine function for the UART . 32
X The routine function for the DAC . 33
XI The DAC operation modes . 34
XII The DAC waveform generation code . 34
XIII The ISR which fires every millisecond 37
XIV The sound update function . 38
XV The character ingest function . 42
XVI The command parsing function . 43
XVII The command execution routine . 44

Literaturverzeichnis

[1] Analog Discovery 2 Reference Manual. Digilent, Inc. Sept. 2015. url:
https : / / reference . digilentinc . com / _media / reference /

instrumentation/analog-discovery-2/ad2_rm.pdf.

[2] Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V. Atmel Corporation. Feb.
2014. url: https://ww1.microchip.com/downloads/en/devicedoc/
atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-

2560-2561_datasheet.pdf.

[3] PC16550D Universal Asynchronous Receiver/Transmitter With FIFOs. Texas In-
struments Inc. 1995. url: https://www.scs.stanford.edu/10wi-cs140/
pintos/specs/pc16550d.pdf.

[4] MAX232x Dual EIA-232 Drivers/Receivers. Texas Instruments Inc. Feb. 1989.
url: https://www.ti.com/lit/ds/symlink/max232.pdf.

[5] DUAL 8-BIT MUTLIPLYING DIGITAL-TO-ANALOG CONVERTERS. Texas In-
struments Inc. 1987. url: https : / / www . ti . com / lit / ds / symlink /
tlc7528.pdf.

[6] Integrated Device Technology, Inc.: CMOS ASYNCHRONOUS FIFO. RENE-
SAS. 2002. url: http://www.komponenten.es.aau.dk/fileadmin/
komponenten/Data_Sheet/Memory/IDT7201.pdf.

Brauns, Plank LITERATURVERZEICHNIS II

https://reference.digilentinc.com/_media/reference/instrumentation/analog-discovery-2/ad2_rm.pdf
https://reference.digilentinc.com/_media/reference/instrumentation/analog-discovery-2/ad2_rm.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://www.scs.stanford.edu/10wi-cs140/pintos/specs/pc16550d.pdf
https://www.scs.stanford.edu/10wi-cs140/pintos/specs/pc16550d.pdf
https://www.ti.com/lit/ds/symlink/max232.pdf
https://www.ti.com/lit/ds/symlink/tlc7528.pdf
https://www.ti.com/lit/ds/symlink/tlc7528.pdf
http://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Memory/IDT7201.pdf
http://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Memory/IDT7201.pdf

[7] High-Speed CMOS Logic Octal D-Type Flip-Flop, 3-State Positive-Edge Trig-
gered. Texas Instruments Inc. Feb. 1998. url: https://www.ti.com/lit/
ds/schs183c/schs183c.pdf.

[8] SNx4HC00 Quadruple 2-Input Positive-NAND Gates. Texas Instruments Inc.
Dec. 1982. url: https://www.ti.com/lit/ds/symlink/sn74hc00.pdf.

[9] Compact disc digital audio system. Standard. International Electrotechnical
Commission, Sept. 1987.

[10] Ethan Winer: The Audio Expert: Everything You Need to Know About Audio.
Focal Press, 2013. url: https : / / books . google . com / books ? id =
TIfOAwAAQBAJ&pg=PA107#v=onepage&q=-%2010%20dbv&f=false.

[11] Jenny List: „Taking It To Another Level: Making 3.3V Speak With 5V“. In: (Dec.
2016). url: https://hackaday.com/2016/12/05/taking- it- to-
another-level-making-3-3v-and-5v-logic-communicate-with-

level-shifters/.

[12] Schottky Barrier Diode DB3S406F0L Silicon epitaxial planar type. Panasonic.
Mar. 2010. url: https://industrial.panasonic.com/content/data/
SC/ds/ds4/DB3S406F0L_E.pdf.

[13] Ron Schnell: Dunnet Source Code. Emacs. 1982. url: https://github.com/
jwiegley/emacs-release/blob/master/lisp/play/dunnet.el.

[14] ASCII Format for Network Interchange. Standard. Network Working Group, Oct.
1969. url: https://tools.ietf.org/pdf/rfc20.pdf.

[15] VT100 SERIES TECHNICAL MANUAL. Digital Equipment Corporation. 1979.
url: https://vt100.net/docs/vt100-tm/ek-vt100-tm-002.pdf.

[16] Tool Interface Standard (TIS)Executable and Linking Format (ELF) Specification.
Standard. TIS Committee, May 1995. url: https://refspecs.linuxbase.
org/elf/elf.pdf.

[17] Unknown Author: Data in Program Space. avr-libc 2.0.0 Standard C library for
AVR-GCC. 2016. url: https://www.nongnu.org/avr- libc/user-
manual/pgmspace.html.

Brauns, Plank LITERATURVERZEICHNIS III

https://www.ti.com/lit/ds/schs183c/schs183c.pdf
https://www.ti.com/lit/ds/schs183c/schs183c.pdf
https://www.ti.com/lit/ds/symlink/sn74hc00.pdf
https://books.google.com/books?id=TIfOAwAAQBAJ&pg=PA107#v=onepage&q=-%2010%20dbv&f=false
https://books.google.com/books?id=TIfOAwAAQBAJ&pg=PA107#v=onepage&q=-%2010%20dbv&f=false
https://hackaday.com/2016/12/05/taking-it-to-another-level-making-3-3v-and-5v-logic-communicate-with-level-shifters/
https://hackaday.com/2016/12/05/taking-it-to-another-level-making-3-3v-and-5v-logic-communicate-with-level-shifters/
https://hackaday.com/2016/12/05/taking-it-to-another-level-making-3-3v-and-5v-logic-communicate-with-level-shifters/
https://industrial.panasonic.com/content/data/SC/ds/ds4/DB3S406F0L_E.pdf
https://industrial.panasonic.com/content/data/SC/ds/ds4/DB3S406F0L_E.pdf
https://github.com/jwiegley/emacs-release/blob/master/lisp/play/dunnet.el
https://github.com/jwiegley/emacs-release/blob/master/lisp/play/dunnet.el
https://tools.ietf.org/pdf/rfc20.pdf
https://vt100.net/docs/vt100-tm/ek-vt100-tm-002.pdf
https://refspecs.linuxbase.org/elf/elf.pdf
https://refspecs.linuxbase.org/elf/elf.pdf
https://www.nongnu.org/avr-libc/user-manual/pgmspace.html
https://www.nongnu.org/avr-libc/user-manual/pgmspace.html

Anhang

Brauns, Plank Anhang IV

	Gendererklärung
	Kurzfassung/Abstract
	Result
	Task description
	Hardware

	Hardware peripherials
	Parallel bus
	Address Bus

	Data Bus
	Control Bus
	Master Reset
	Write Not
	Read Not
	Module Select 1 and 2 Not

	Testing and Measurement
	Measurements
	Testing

	Backplane
	Termination resistors

	Case
	Serial Console
	16550 UART
	MAX-232
	Schematics
	Demonstration Software

	Audio Digital-Analog-Converter
	TLC 7528 Dual R2R Ladder DAC
	IDT7201 CMOS FIFO Buffer
	Theory verfication
	Schematics
	Demonstration Software

	Addressing DACA and DACB
	FPGA to Hardware interface
	Measurement error

	Textadventure
	General Implementation details
	General definitions and pinout of the AVR
	Read and Write routines
	UART and DAC update polling

	DAC sound generation
	DAC modes
	Tones and Tracks
	Track switching

	User command interpretation
	Command structure and parsing
	Command parameters

	Gameplay
	Memory constraints

	Erklärung der Eigenständigkeit der Arbeit
	List of Figures
	List of Tables
	Listings
	Anhang

