HTL AnichstraBe I'I“

Biomedizin - Elektronik - Elektrotechnik - Maschinenbau - Wirtschaftsingenieure bildung mit zukunft

DIPLOMARBEIT

FPGA-BAsierTES RISC-V-CompuTtersysTem: YARM

Hohere Technische Bundeslehr- und Versuchsanstalt AnichstraBBe

Abteilung

ELEKTRONIK UND TECHNISCHE INFORMATIK

Ausgefihrt im Schuljahr 2019/20 von: Betreuer/Betreuerin:
Armin Brauns 5AHEL Dipl.-Ing. Christoph Schénherr
Daniel Plank 5BHEL

Projektpartner: IT-Syndikat, Verein zur Férderung des freien Zugangs zu techni-
scher Fort- und Weiterbildung jeglicher Art, Hackerspace Innsbruck

Ansprechpartner: Ing. David Oberhollenzer B.Sc.

Innsbruck, am 20. Marz 2020

Abgabevermerk: Betreuer/in:

Datum:

Gendererklarung

Aus Grunden der besseren Lesbarkeit wird in dieser Diplomarbeit die Sprachform des
generischen Maskulinums angewendet. Es wird an dieser Stelle darauf hingewiesen,
dass die ausschlieBliche Verwendung der mannlichen Form geschlechtsunabhéangig
verstanden werden soll.

This thesis is written in the language form if the generic masculin for improved
readability. It is pointed out that all masculin-only uses may and should be interpreted
as gender neutral.

Kurzfassung/Abstract

Diese Diplomarbeit beschaftigt sich mit der Arbeitsweise von Prozessoren und
Prozessorperipherie in moderner und traditioneller Form. Sie versucht anschaulich
den Aufbau eines Computersystems in Hard- und Software veranschaulichen sowie
diesen erklaren. Daflr wurde auf einem XILINX FPGA ein RISC-V32l Prozessor
in VHDL implementiert sowie diverse Parallelous gebundene Hardwareperipherie
entwickelt und gebaut. Als Harwareperipherie wurde ein 8-Bit 2-Kanal DAC und eine
serielle Schnittstelle mit TIA-/EIA-232 Pegeln gebaut. Der Prozessor implementiert
das RISC-V32l base instruction set. Aufgrund der starken Verwendung von Englisch
im Software- und Hardwarebereich wurde diese Diplomarbeit in Englisch verfasst,
was ebenfalls die Lesbarkeit erhéhen soll. Die entstandene Dokumentation soll far
Menschen mit einem Grundlegenden Verstandnis von Elektronik sowie der Hardware-
Beschreibungssprache VHDL verstandlich sein.

This diploma thesis deals with the operation of processors and their orrespon-
ding peripherials in modern andd traditional forms. It attempts to illustrate the structure
of a computersystem in hard- and software. To reach this goal a RISC-V32| processor
has been implemented in VHDL on a XILINX FPGA as well as some peripherials
bound to the parallel bus. These peripherials include a 2-channel 8-bit Digital to analog
converter as well as a TIA-/EIA-232 compliant serial interface. Due to the common
use of english in the hardware and software engineering field this thesis was written in
english, which should enhance readability as well. The written documentation should
be understandable for everyone with a basic understanding of electronics as well as
the hardware description language VHDL.

HTL AnichstraBe htl =
Biomedizin - Elektronik - Elektrotechnik - Maschinenbau - Wirtschaftsingenieure bildung mit zukunft
Projektergebnis
Contents
[CT=TaTe 2T 0=T0 X E= T UL T [i
KUrzZTasSUNG/ADSIIACT e e e e e i
PO EKIEIOEDNIS ... e e e e e e e e iii
[T TASK AESCIIDTIONt e e e e e e e e e e e e 1
1
2
2
2
3
3
3
3
3
D34 Module Select 1 and 2 NOi 3
2 CERIERE LY CE R = T TR 4
PAT Measuremenis v v v v e e e e e e 4
P42 Tesling. @ @ i e e 4
BB BaACKDIANE .. .o e s 5
PHT Terminafionresistors e e 5
2 S T OF-T=Y= TR 6
A Y=Y A1 O e Tar=Yo) = 8
P71 I6600UART e e e 8
P77 MAX232 e s, 9
P/ SCNeMAatICS o e 9
P74 Demonstrafion Soffward 13
I 1254 720 Y7 Y T T = 17
B.1T General Implementalion detallS.........coooioiioi i 18
A Erklarung der EigenstandigKeif Aer ArDEIT........oovioeiieiee e e eeeeeanens 20
I Listof FIQUIES.....ccoeeee I
I = o Y 721 1= |
[T EISTINGS - ettt ettt ettt et st e et e e et e e e e ebe e e e |
A @ [T 1

Brauns, Plank iii

1 TASK DESCRIPTION

1.1 Hardware

Due to the recurring questions in the environment of the Hackerspace Innsbruck about
the internal workings of a computer system and the lack of material to demonstrate
these, hardware should be developed for educational purposes. This hardware should
not be to complex to understand but still demonstrate basic tasks of a computer system.
The targeted computing tasks are human interface device controllers, under which a
Digital to Analog Converter® and a serial console with TIA-/EIA-232 compliant voltage
levels were chosen. For these peripherials schematics and a working implementation
in the hardware building style of the hackerspace should be built. All nescessary hard-
ware will be provided by the Hackerspace. If possible already present hardware should
be used, if impossible new one will be ordered. All schematics should, whenether
possible be written in open-source software such as Kicad or GNU-EDA.

If possible software-examples should be written as well, though the complexity of
these was coupled to the time left to spend on the project. Software should be written
in C, the coding convention is left to the implementer.

From now on reffered to simply as DAC

Daniel Plank Task description 1

2 HARDWARE PERIPHERIALS

2.1 Parallel bus

The core part of the hardware is the interface between the microprocessor and the
hardware peripherials. This bus is delivering data in parallel and is therefore named
the “parallel bus®. This bus has 3 different sub-parts:

1. The address bus
2. The data bus

3. The control bus

This split is common in many computer architectures and bus systems used by
various microprocessor manufacturers. In figure A the layout of the Atari Parallel Bus
Interface is shown as used on the Atari 800XL.

Pin 1 _ /P-C Connector /Pin 49
]
N

;@Ezzzzmﬁzmﬁ

_ Pin 50
Fin 2
NN N NN NN EEN NN N
PAd 5 &7 BYNIPEra 15T v 0 T 9270 BT 8 2R LT i 4 31 JX P A7 40 4535 3209 4T 45 ¢ A0 10 4% 1408 T apat
Ty rryrr T rrrrFirrr rrr Ty T Frf T T I T YrrrrrrrTrrrT eIl ITIrTT
O - — -
FIITILITNYLICATILRRE3IL8R RO 25 eiogogy g88800099
. i ‘¥ . _-gﬁ%‘*v 555863858
ADDRELS LINES DALA (INES & =§ B oz
(ADATS) D07
Figure 4,

Paraliel Bus Pinout

Figure 1: Atari PBI Pinout;Source: https://www.atarimagazines. com

2.1.1 Address Bus

The address bus contains the nescessary data lines for addressing the individual reg-
isters of the Serial connection and the uart. On any modern system this bus is from 16
to 64 bits wide. For our implementation the bus size was chosen to be 8 bit, which is
multiple times the amount of needed address space, but is the smallest addressable

Daniel Plank Hardware peripherials 2

https://www.atarimagazines.com

unit on most microcontroller architectures and therefore easy to program with. The
address bus is unidirectional.

2.2 Data Bus

The data bus contains the actual data to be stored to and read from registers. The data
bus is, as well on most systems a multiple of 16 bits wide, but for the same reasons as
the data bus, was shrunk down in our case to 8 bits. The data bus is bidirectional.

2.3 Control Bus

Control bus is a term which referes to any control lines (such as read and write lines
or clock lines) which are neither address nor data bus. The control bus in our case
needed to be 5 bits wide and consists of:

e MR ... Master Reset

e ~WR ... Write Not

e —RD ... Read Not

e —MS1 ... Module Select 1 Not

e —MS2 ... Module Select 2 Not

2.3.1 Master Reset

A high level on the MR lane signals to the peripherials that a reset of all registers and
states should occure. This is needed for the serial console and the dac.

2.3.2 Write Not

A low level on the =WR lane signals the corresponding modules that the data on the
data bus should be written to the register on the address specified from the address
bus.

2.3.3 Read Not

A low level on the =RD lane signals the corresponding modules that the data from the
register specified by the address on the address bus should be written to the data bus.
2.3.4 Module Select 1 and 2 Not

A low level on one of these lines signals the corresponding module that the data on
address data and the control lines is meant for it.

Daniel Plank Data Bus 3

2.4 Testing and Measurement

For functional testing and verification of implementation goals, measurements needed
to be performed invarious different ways and testing software was required.

2.4.1 Measurements

Measurements were performed, if not noted otherwise, with the Analog Discovery 2
from Digilent as it has 16bit digital I/O Pins as well a a Waveform generator and 2
differential oszilloscope inputs. These were for all nescessary measurements enough.
Though due to the size and construction of the device, which can be seen in figure
B errors wer encountered while performing the measurements. These are noted on
occurance.

Figure 2: Digilent Analog Discovery 2;Source: https://www.sparkfun.com/

2.4.2 Testing

All testing was performed with an Atmel ATMega2560 due to it’s large amount of 1/O
pins, 5V I/O which is the more common voltage level on CMOS peripherials, way of
addressing pins (8 at a time) and availability. All testing software was written for this
ATMega and compiled using the avr-gcc from the GNU-Project.

Daniel Plank Testing and Measurement 4

https://www.sparkfun.com/

2.5 Backplane

To connect the modules to the microprocessor, many pins need to be connected
straight through. For this purpose a backplane was chosen where DIN41612 con-
nectors can be used. These connectors were chosen for their large pin count (96 pins)
and their availability. The backplane connects all 96-pins straight through. With the 6
outer left and right pins connected for VCC and ground, as can be seen in figure B.

X1
YARM—BUS-SLAVE

N
nnnnn

N
o

B DATABUS ICONTROLBUS IADDRESSBUS B

All Pins connected straight through
YARM —Project Backplane BUS Layout
YARM-Project

Sheet: /

File: conn.sch

Title: YARM—DIN41612

Size: User ‘ Date: 2020-03-18 ‘ Rev: 1
¢ KiCad E.D.A. kicad 5.1.5 [T 1/1 ¢
1 [2 T 3

Figure 3: Layout of the DIN41612 Connectors on the Backplane

2.5.1 Termination resistors

In constrast to other systems using this backplane, no termination resistors were used.
This makes the bus more prone to refelctions, however these were not a problem during
development with the maximum transmission rate of 1MHz, as can be seen in the
sample recording in figure @

Daniel Plank Backplane 5

Voltage on MS1
N

-1 —08 -0.6 —04 -0.2 0 02 04 06 08 1 12 14 16 18
Time -10™

SN

Figure 4: Measurement at around 1MHz bus clock on MS1

The ripple seen in figure @ are most likely due to the sample rate of the Oszilloscope,
which is around 10Mhz after an average filter has been applied. The measurement was
performed on the finished project, with all cards installed.

2.6 Case

The case for the backplane was provided by the hackerspace, and is meant for instal-
lation in a rack. The case is meant for installation of cards in the EUROCARD format,
therfore all modules were built by this formfactor.

Daniel Plank Case 6

Figure 5: The case with installed backplane

Daniel Plank Case 7

2.7 Serial Console

One core part of any computer systems is it's way to get human input. On older sys-
tems, and even today on server machines, this is done via a serial console. On this
serial console, characters are transmitted in serial, which means bit by bit over the
same line. The voltage levels used in these systems vary from 5V to 3.3V or +-10V.
The most common standart for these voltage levels is the former RS-232% or as it
should be called now TIA-%/EIA-#232. Voltage- levels as per TIA-/EIA Standard are not
practical to handle over short distances to handle however, so other voltages are used
on most interface chips and need to be converted.

2.7.1 16550 UART

The 16550 UART® is a very common interface chip for serial communications. It pro-
duces 5V logic levels as output on TX and needs the same as input on RX. Thoug
common for a UART, these voltage levels need to be converted to TIA-/EIA-232 levels
for a more common interface.

The 16550 UART is, in it's core a 16450 UART, but has been given a FIFO B buffer.
It needs three address lines, and 8 data lines, which can be seen in figure B

NFJ Package
44-Pin PDIP
Top View

o/
Dg—
0
D,

40 vy
R]
38— DCD
37| DSR
|~ TS
35 —MR
34— ouTi
D7 33D
RCLK—] 8 32|—RTS
SIN—{ 10 3t|—-out2
SoUT—{ 11 30 |=INTR
cso—12 29 |~ RXRDY
cs1—{13 28|-4,
csz—14 27 A
BAUDOUT —{ 15 264,
XIN—{16 25 |—ADS
xout—{17 24 |- TXRDY
WR—{18 23 [—DDIS
WwR—{19 22|—RD
Ves—] 20 21[—RrD

Dz —
D=
D5 —1
Dg -

BN O ! R N —
o
)

Figure 6: PC-16550D Pinout[T]

In figure B the most important lanes are the SIN and sout lanes, as they contain the
serial data to and from the 16550 UART.

2RS... Recommended Standard
3TIA...Telecommunications Industry Association
4EIA.. Electronic Industries Alliance

SUinversal Asynchronous Receiver and Transmitter
8First-In First-Out

Daniel Plank Serial Console 8

2.7.2 MAX-232

To convert the voltage levels of the 16550 UART to levels compliant wit TIA-/EIA-232
levels, the MAX-232 is used. It has two transmitters and two receivers side and gener-
ates the needed voltage levels via an internal voltage pump[?].

2.7.3 Schematics

Based on the descriptions in the datasheets the schematic in figure 2 was developed.

Daniel Plank MAX-232 9

2 | 3 [I
03 R7
o 270°>
7%
GNDD
X1
YARM—BUS—-SLAVE
1012
,@ Conn_01x05
S s
4
+5v g8
GNDD
_|_ozg +5V
16§50
_|_28
K
8 EE
- MAXR232
w3
oo |38
TTs 36 i
T
o |2
28] 70 R |33
2] 1)
A2 ouT? |3
GNDD e 12| pa
H <—413] (& TX UART/RS232 2
c2 14152 14 o2 11] 3 3
i1 33 16 10 RJLS
1.8432MHz XIN SIN P3 10
5 RL - Y1 R2 sout (L RX UART/RS232~ |
1.8432MHzZLKS _|»O\/O 2 12
XouT
RXRDY |22
33p TXROY |24~
”w WR oois |23
a WR
GNDD 2 P22 JP1
5 _.m RO UART/USART
Ty 25| > BATBOUT 115 145 32
22| 703 BADDOUT A5—— 10 O-24
& ¥ 30
INTR
351 MR 2 RCLK |2
]
GNDD
Serial-Port 16550 with MAX232
YARM-Project
Sheet: /
File: 16550.sch
Title: YARM—-16650
Size: Al | Date: 2020-02-17
KiCad E.D.A. kicad 5.1.5
I Z I 4 I

f the UART Module

ico

The schemat

Figure 7

10

Schematics

Daniel Plank

Element Description The quartz oszillator Y1 is the clock source for the Baud Rate
generation and was chosen with 1.8432 MHz for availability reasons and because it
is the lowest ozillator from which all common baud rates can still be derived from [{].
Resistors R1 and R2 are for stability and functionality of the Oszillator nescessary as
per datasheet. The resulting frequency can bemeasured via J1, the measurement can
be seen in B. C1 is used to stabilize the voltage for the 16550 UART and is common
practice. Via JP1 the UART can be transformed into a USRT where the receiver is
synchronized to the transmitter via a clock line. This mode has, however, not been
tested, and the clock needs to be 16 times the receiver clock rate[d]. The final output
of the 16550 UART can be used and measured via J2, as shown in figure 9 . Before
the UART on J2 can be use however, the Jumpers JP2 and JP3 need to be removed as
otherwise the MAX-232 will short out with the incoming signal. capacitors C4, C6, C7,
C7 and C8 are for the voltage pump as defined in the datasheet[?]. R4 and R5 have
been suggested by the supervisor in order toavoid damage to the MAX-232. The RJ-45
plug is used to transmit the TIA-/EIA-232 signal, rather than the more common D-SUB
connector, because the RJ-45 connector fits on a 2.54mm grid. The Pinout onthe RJ-
45 plug can be seen in figure 0. C5 has the same functionality for the MAX-232 as
the C1 has to the 16550-UART.

6

5

Quartz Voltage

EEEBEEEREEREI!

0 0.5 1 1.5 2 25 3 3.5 4 4.5
Time 107

Figure 8: Measurement of the 1.8432 MHz Output on J1

Daniel Plank Schematics 11

Lane Voltage

10

[

\W

—e—TIA-/EIA-232 level
UART level

-

b

-4 -3 -2 -1

0 1

Time

2 3 4 5 6

1074

Figure 9: Measurement of a character transmission before and after MAX-232

Pin No.

RJ4S Format RTS 1 ac_’_\"_'l i Request to Send
Console Ports DTR 2 9"'\':} { Ready Out

TXD 3 o-':_’\'} {, Data Out

GND 4 — Ground
ping) LPin1 5 -

RXD 6 >0 { Dataln

DCD 7 >0 §, Carrier Detect

CTS 8 >0 i, Clear to Send

Figure 10: Pinout of the RJ-45 Plug; Src: https://www.wti.com/

Daniel Plank

Schematics

12

https://www.wti.com/

2.7.4 Demonstration Software

To demonstrate the functionality and prove, that the schematic has no underlying error,
a program which regularly transmits a character was written as well as a simple echo
program, which transmits all received characters. Both programs transmit 8 bit charac-
ters without parity at 38400 Baud. The output for program one can be seen in figure 9
and the output for program two in figure A1

Lane Voltage

—o—RX

V1A oL BRR a2l va[ittiittt
bk prebtey i i

-3 -2 -1 0 1 2 3 4 5 6 7 8 9
Time ,10—4

(@]
T T T T 1T 17 1T T 1T T 1T 1T T T 1T T T T 1T T T T 1T 1T T T T 1T T 71T 7 7T 71T T T T 71 T 71T T T T 717 T 7T

Figure 11: Measurement of a character echo

Transmit code The transmit code regularly transmits the letter capital A via the
16550 UART, but before it can do this it needs to perform some initialisations. The
functions shown in listing A are the read and write routines for accessing the 16550
UART. These routines also apply to the echo code.

#define F_CPU 16000000UL

#include <stdint.h>
#include <util/delay.h>

#define BUS_HOLD_US 1

Daniel Plank Demonstration Software 13

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

54

55

#define WR_SHIFT 1
#define RD_SHIFT 2
#define MR_SHIFT 0
#define CS_SHIFT 3
#define CS_ADC_SHIFT 4

#define UART_REG_DLLS
#define UART_REG_DLMS
#define UART_REG_TXRX
#define UART_REG_IER
#define UART_REG_IIR
#define UART_REG_LCR
#define UART_REG_MCR
#define UART_REG_LSR
#define UART_REG_MSR
#define UART_REG_SCR

N o ok, WN PR OO

void set_addr(uint8_t addr){

PORTK = addr;

return;

void write_to_16550(uint8_t addr, uint8_t data){

set_addr(addr);

DDRF = OxFF;
PORTL &= ~(1<<WR_SHIFT);
PORTF = data;

PORTL &= ~(1<<CS_SHIFT);
_delay_us (BUS_HOLD_US) ;

PORTL |= 1<<CS_SHIFT;
set_addr(0x00);

PORTL |= 1<<WR_SHIFT;
PORTF = 0x00;

return;

uint8_t read_from_16550(uint8_t addr){

uint8_t data = 0x00;
set_addr(addr);

Daniel Plank Demonstration Software

14

57

58

59

60

61

62

63

64

65

66

67

68

69

DDRF = 0x00;

PORTF = 0x00;

PORTL &= ~(1<<RD_SHIFT);
PORTL &= ~(1<<CS_SHIFT);
_delay_us (BUS_HOLD_US);
data = PINF;

PORTL |= 1<<CS_SHIFT;
set_addr(0x00);

PORTL |= 1<<RD_SHIFT;
DDRF = OxFF;

PORTF = 0x00;

_delay_us (BUS_HOLD_US);

return data;

Listing 1: Read and write routines for the 16550 UART

To write to the 16550 UART, you need to perform some setup tasks. After startup, it
requires a MR for at least 5is[d]. The baud rate divisor latch needs to be set to the
specified divisor for the desired baud rate, and the character width and parity control
needs to be set. The MR signal is beeing generated by the AVR on bootup. To access
the divisor latch, the divisor latch access bit needs to be set and after setting up the
baud rate divisor latch, it nees to be cleared to allow a regular transmission. This
process can be seen in listing 2

int main(){

cli();

DDRF = OxFF;

DDRK = OxFF;

DDRL = OxFF;

PORTF = 0x00;

PORTK = 0x00;

PORTL = 0x00;

PORTL |= (1<<WR_SHIFT);
PORTL |= (1<<RD_SHIFT);
PORTL |= (1<<CS_SHIFT);
PORTL |= (1<<MR_SHIFT);
_delay_us(100);

PORTL &= ~(1<<MR_SHIFT);

Daniel Plank Demonstration Software 15

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

_delay_us(1000);
sei();

for(;;){
write_to_16550 (UART_REG_LCR,0x83)
write_to_16550 (UART_REG_DLLS,0x03
write_to_16550 (UART_REG_DLMS, 0x00
()
()

’

);
)

’

write_to_16550(UART_REG_LCR,0x03
write_to_16550 (UART_REG_TXRX, 'A’
_delay_us(10000);

}

’

return 0;

Listing 2: 16550 INIT routines and single char transmission

The output of this code on the address, data and control bus as well as on the

SOUT lane of the 16550 UART can be seen in figure A2

o= o T

.
Name pin T 4096 samples at 8.3333 MHz | 2020-02-11 18:53:52.627

- [paTA ———{h83Tho3 [hoo [ho3 [ha1
cock BEx U U ULUL
711581 o 1554
6 X
5 X
4 DI0 12 X
; B
2 o0 10Bd
1 EX M
0[MsB] Do 8 X [

- laddr ho [Jro T Ihno
2[msB] X
' X [1 [1
0[LSB] pio 0 X
i BRI TLTLILIL]
IRD DI04 X
MR X
3 BEx— U UUUL

- lsout {ha1lal

Data 10 74 Start 0 1 [B

Is 3 i fstop T

x |+ -29.5us. Fys 40.9us 76.1us 1113 us 146.5 us 181.7 us

216.9 us 252.1 us 287.3us 322.5us

Figure 12: Transmission of character A via the 16550 UART

Echo code The echo code permanently polls the 16550 UART wether a character
has been received, and if yes, reads it from the receiver holding register andwrites it
back to the tx holding register. The output of this code can be seen in figure @1. The
initialisation is practically the same as for the transmission code, as well as the read

and write routines in listing .

w‘(int main () {

Daniel Plank Demonstration Software

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

cli();

DDRF = OxFF;

DDRK = OxFF;

DDRL = OxFF;

PORTL |= (1<<WR_SHIFT);
PORTL |= (1<<RD_SHIFT);
PORTL |= (1<<CS_SHIFT);
PORTL |= (1<<CS_ADC_SHIFT);
PORTL |= (1<<MR_SHIFT);
_delay_us(100);

PORTL &= ~(1<<MR_SHIFT);
_delay_us(1000);

write_to_16550 (UART_REG_LCR,0x83);
write_to_16550 (UART_REG_DLLS,0x03);
write_to_16550 (UART_REG_DLMS, 0x00);
write_to_16550 (UART_REG_LCR,0x03);
for(;;){
if(read_from_16550(UART_REG_LSR) & 0x01){
write_to_16550 (UART_REG_TXRX,
read_from_16550 (UART_REG_TXRX)) ;

return 0;

Listing 3: 16550 character echo

3 TEXTADVENTURE

To illustrate how the components work together and can be used in various different
applications, a small text-adventure with audio effects was written in C. The main goal
was to show the capabilities of even small systems like the one developed.

Daniel Plank Textadventure 17

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

3.1

General Implementation details

Like the before examples, the textadventure was implemented on an ATMega2560 and
uses 3 different Registers for transmission: PORTF, PORTK and PORTL for address
bus, data bus and control bus respectively, as can be seen in listing &

/*

*

X X * ¥ ¥

X X * * ¥

*

#if
#de

#de
#in

/%

#de
#de
#de
#de
#de

#de
#de
#de

#de
#de
#de

/%

Copyright (C) 2020 tyrolyean

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

ndef _AVR_H_TEXT
fine _AVR_H_TEXT

fine F_CPU 16000000UL
clude <avr/io.h>

Shift values for the peripherials on the control bus PORTL x*/
fine MR_SHIFT 0
fine WR_SHIFT 1
fine RD_SHIFT 2
fine CS_UART_SHIFT 3
fine CS_DAC_SHIFT 4
fine ADDR_REG PORTK
fine DATA_REG PORTF
fine CTRL_REG PORTL
fine ADDR_DDR_REG DDRK

fine DATA_DDR_REG DDRF
fine CTRL_DDR_REG DDRL

Included here to prevent accidental redefinition of F_CPU x/

Daniel Plank General Implementation details

18

42

43

44

45

46

47

48

49

#include <util/delay.h>

#define BUS_HOLD_US 1

void set_addr(uint8_t addr);

#endif
\

Listing 4: The avr.h header file

The in listing @ shown defines MR_SHIFT, WR_SHIFT, RD_SHIFT,
CS_UART_SHIFT and CS_DAC_SHIFT are used to indicate the position of the
corresponding control lines inside the control bus register. All other shift values are the
same bitordering in input as in output.

The BUS_HOLD_US is used to tell the avr how many microsecons it takes for the
data bus to be latched into input register of the devices on write or how long it takes for
the data bus to become stable on read.

Daniel Plank General Implementation details 19

4 ERKLARUNG DER EIGENSTANDIGKEIT DER ARBEIT

EIDESSTATTLICHE ERKLARUNG

Ich erklare an Eides statt, dass ich die vorliegende Arbeit selbsténdig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt und die den benutzten Quellen wértlich und inhaltlich entnommenen Stel-
len als solche erkenntlich gemacht habe. Meine Arbeit darf 6ffentlich zuganglich
gemacht werden, wenn kein Sperrvermerk vorliegt.

Ort, Datum Armin Brauns

Ort, Datum Daniel Plank

Brauns, Plank Erklarung der Eigenstandigkeit der Arbeit

20

| List oF FIGURES

i Atari PBI Pinout;Source: https://www.atarimagazines.con . . . 2
2 Digilent Analog Discovery 2;50urce: Nttps://www.Sparktun.com/| 4
B Tayout of the DIN41612 Connectors on the Backplang 5
4 Measuremenf af around TMHz bus clockon MST 6
b I'he case with installed backplang 7
6 PC-16550D Pinouf[T] 8
[/ ___1he schematic of the UART Module 10
[$] Measurement of the 1.8432 MRz OutputondJl1 11
9 Measurement of a characier fransmission before and affer MAX-237 . 12
10 Pinout of the RJ-45 Plug; Src: https://www.wti.com/] 12
01 __Measurementora characier ecna.« . v v v v v v e .. 13
12 __Iransmission of characier A via ithe 16550 UART 16

Il List oF TABLES

Il LisTiNGgS

I Head and wrife roufines forthe 16550 UART 13

P 16550 INIT roufines and single char fransmission 15

B T6hh0 characierechd i v o i e e e e e e 16

7 [he avrhheaderdild i i . 18
LITERATURVERZEICHNIS

[1] PC16550D Universal Asynchronous Receiver/Transmitter With FIFOs. Texas In-
struments Inc. 1995. urL: https://www.scs.stanford.edu/10wi-cs140/
pintos/specs/pclo550d. pdf.

[2] MAX232x Dual EIA-232 Drivers/Receivers. Texas Instruments Inc. 1989. uRL:
https://www.ti.com/lit/ds/symlink/max232.pdf.

Brauns, Plank List of Figures I

https://www.scs.stanford.edu/10wi-cs140/pintos/specs/pc16550d.pdf
https://www.scs.stanford.edu/10wi-cs140/pintos/specs/pc16550d.pdf
https://www.ti.com/lit/ds/symlink/max232.pdf

ANHANG

Brauns, Plank

Anhang

	Gendererklärung
	Kurzfassung/Abstract
	Projektergebnis
	Task description
	Hardware

	Hardware peripherials
	Parallel bus
	Address Bus

	Data Bus
	Control Bus
	Master Reset
	Write Not
	Read Not
	Module Select 1 and 2 Not

	Testing and Measurement
	Measurements
	Testing

	Backplane
	Termination resistors

	Case
	Serial Console
	16550 UART
	MAX-232
	Schematics
	Demonstration Software

	Textadventure
	General Implementation details

	Erklärung der Eigenständigkeit der Arbeit
	List of Figures
	List of Tables
	Listings
	Anhang

