
HTL Anichstraße
Biomedizin · Elektronik · Elektrotechnik · Maschinenbau ·Wirtschaftsingenieure

DIPLOMARBEIT

FPGA-basiertes RISC-V-Computersystem: YARM

Höhere Technische Bundeslehr- und Versuchsanstalt Anichstraße

Abteilung

Elektronik und technische Informatik

Ausgeführt im Schuljahr 2019/20 von:

Armin Brauns 5AHEL

Daniel Plank 5BHEL

Betreuer/Betreuerin:

Dipl.-Ing. Christoph Schönherr

Projektpartner: IT-Syndikat, Verein zur Förderung des freien Zugangs zu techni-
scher Fort- und Weiterbildung jeglicher Art, Hackerspace Innsbruck

Ansprechpartner: Ing. David Oberhollenzer B.Sc.

Innsbruck, am 28. März 2020

Abgabevermerk:

Datum:

Betreuer/in:

Gendererklärung

Aus Gründen der besseren Lesbarkeit wird in dieser Diplomarbeit die Sprachform des
generischen Maskulinums angewendet. Es wird an dieser Stelle darauf hingewiesen,
dass die ausschließliche Verwendung der männlichen Form geschlechtsunabhängig
verstanden werden soll.

Kurzfassung/Abstract

Diese Diplomarbeit beschäftigt sich mit der Arbeitsweise von Prozessoren und Pro-
zessorperipherie in moderner und traditioneller Form. Sie versucht anschaulich den
Aufbau eines Computersystems in Hard- und Software zu veranschaulichen sowie
diesen zu erklären. Dafür wurde auf einem XILINX FPGA ein RISC-V32I Prozes-
sor in VHDL implementiert sowie diverse Parallelbus gebundene Hardwareperipherie
entwickelt und gebaut. Als Harwareperipherie wurde ein 8-Bit 2-Kanal DAC und eine
serielle Schnittstelle mit TIA-/EIA-232 Pegeln gewählt. Der Prozessor implementiert
das RISC-V32I base instruction set. Aufgrund der starken Verwendung von Englisch
im Software- und Hardwarebereich wurde diese Diplomarbeit in Englisch verfasst,
was ebenfalls die Lesbarkeit erhöhen soll. Die entstandene Dokumentation soll für
Menschen mit einem grundlegenden Verständnis von Elektronik sowie der Hardware-
Beschreibungssprache VHDL verständlich sein.

This diploma thesis deals with the operation of processors and their correspond-
ing peripherials in modern and traditional forms. It attempts to illustrate the structure
of a computersystem in hard- and software. To reach this goal a RISC-V32I processor
has been implemented in VHDL on a XILINX FPGA as well as some peripherials
bound to the parallel bus. These peripherials include a 2-channel 8-bit Digital to ana-
log converter as well as a TIA-/EIA-232 compliant serial interface. Due to the common
use of english in the hardware and software engineering field this thesis was written in
english, which should enhance readability as well. The written documentation should
be understandable for everyone with a basic understanding of electronics as well as
the hardware description language VHDL.

Result

The project was fully implemented with all functionality originally targeted. The sys-
tem has been tested and verified and all example code have been documented and
tested as running. Implementations in hardware were made in open-source programs
and the RISC-V processor can compile using an open source toolchain. The com-
pleted project can be found on the USB stick which accompanies this thesis, or in
the git repositories at https://git.it-syndikat.org/tyrolyean/dipl.git
and https://gitlab.com/YARM-project/. The completed hardware periphe-
rials can be seen in figure i

https://git.it-syndikat.org/tyrolyean/dipl.git
https://gitlab.com/YARM-project/

Figure i: An overview of the hardware peripherials

HTL Anichstraße
Biomedizin · Elektronik · Elektrotechnik · Maschinenbau ·Wirtschaftsingenieure

Contents

Gendererklärung ... i

Kurzfassung/Abstract ... ii

Result ... iii

1 Task description.. 1
1.1 Hardware ... 1

2 Hardware peripherials ... 2
2.1 Parallel bus... 2

2.1.1 Address Bus . 3
2.2 Data Bus .. 3
2.3 Control Bus .. 3

2.3.1 Master Reset . 3
2.3.2 Write Not . 4
2.3.3 Read Not . 4
2.3.4 Module Select 1 and 2 Not . 4

2.4 Testing and Measurement ... 4
2.4.1 Measurements . 4
2.4.2 Testing . 5

2.5 Backplane .. 7
2.5.1 Termination resistors . 7

2.6 Case .. 8
2.7 Serial Console .. 10

2.7.1 16550 UART . 10
2.7.2 MAX-232 . 11
2.7.3 Schematics . 11
2.7.4 Demonstration Software . 15
2.7.5 Final Module . 19

2.8 Audio Digital-Analog-Converter .. 21
2.8.1 TLC 7528 Dual R2R Ladder DAC 21
2.8.2 IDT7201 CMOS FIFO Buffer . 22
2.8.3 Theory verfication . 22
2.8.4 Schematics . 23
2.8.5 Demonstration Software . 26

3 Addressing DACA and DACB... 30
3.0.1 Final Module . 30

3.1 FPGA to Hardware interface .. 31
3.1.1 Measurement error . 34

Brauns, Plank v

HTL Anichstraße
Biomedizin · Elektronik · Elektrotechnik · Maschinenbau ·Wirtschaftsingenieure

4 Textadventure ... 34
4.1 General Implementation details.. 35

4.1.1 General definitions and pinout of the AVR 35
4.1.2 Read and Write routines . 37
4.1.3 UART and DAC update polling 37
4.1.4 Program execution path . 38

4.2 DAC sound generation .. 40
4.2.1 DAC modes . 40
4.2.2 Tones and Tracks . 44
4.2.3 Track switching . 48

4.3 User command interpretation... 48
4.3.1 Command structure and parsing 48
4.3.2 Command parameters . 50

4.4 Gameplay... 51
4.4.1 Memory constraints . 53
4.4.2 Story . 53
4.4.3 Recursion . 53
4.4.4 Computer State Machine . 53

I A short introduction to VHDL 56
5 Prerequisites .. 56

6 Creating a design.. 56

7 Simulating a design... 58

8 Synthesizing a design ... 59

II Meta 60
9 History ... 60

10 Tooling ... 62
10.1 Vendor Tools... 62
10.2 Free Software Tools .. 62

11 Peripherals ... 63
11.1 UART... 63
11.2 DVI graphics ... 63

11.2.1 VGA timing . 63
11.2.2 Text renderer . 64
11.2.3 TMDS encoder . 65

Brauns, Plank vi

HTL Anichstraße
Biomedizin · Elektronik · Elektrotechnik · Maschinenbau ·Wirtschaftsingenieure

11.3 Ethernet ... 65
11.4 WS2812 driver.. 66
11.5 DRAM.. 67
11.6 External Bus... 67

12 Testing ... 68
12.1 RISC-V Compliance Tests ... 68

III The Core 68
13 Overview.. 69

14 Control ... 69

15 Decoder ... 70

16 Registers.. 71

17 Arithmetic and Logic Unit (ALU) ... 72

18 Control and Status Registers (CSR) ... 72

19 Memory Arbiter... 73

20 Exception Control ... 74

21 Erklärung der Eigenständigkeit der Arbeit ... 76

I List of Figures... I

II List of Tables .. I

III Listings .. I

Anhang ... II

Brauns, Plank vii

1 Task description

1.1 Hardware

Due to the recurring questions in the environment of the Hackerspace Innsbruck about
the internal workings of a computer system and the lack of material to demonstrate
these, hardware should be developed for educational purposes. This hardware should
not be too complex to understand but still demonstrate basic tasks of a computer sys-
tem. The targeted computing tasks are human interface device controllers, under which
a Digital to Analog ConverterA and a serial console with TIA-/EIA-232 compliant voltage
levels were chosen. For these peripherials schematics and a working implementation
in the hardware building style of the hackerspace should be built. All nescessary hard-
ware will be provided by the Hackerspace. If possible already present hardware should
be used, if impossible new one will be ordered. All schematics should, where possible
be written in open-source software such as Kicad or GNU-EDA.

If possible software-examples should be written as well, though the complexity of these
are coupled to the time left to spend on the project. Software should be written in C,
the coding convention is left to the implementer.

AFrom now on reffered to simply as DAC

Daniel Plank Task description 1

2 Hardware peripherials

2.1 Parallel bus

The core part of the hardware is the interface between the microprocessor and the
hardware peripherials. This bus is delivering data in parallel and is therefore named
the “parallel bus“. This bus has 3 different sub-parts:

1. The address bus

2. The data bus

3. The control bus

This split is common in many computer architectures and bus systems used by various
microprocessor manufacturers. In figure ii the layout of the Atari Parallel Bus Interface
is shown as used on the Atari 800XL.

Figure ii: Atari PBI Pinout;Source: https://www.atarimagazines.com

Daniel Plank Hardware peripherials 2

https://www.atarimagazines.com

2.1.1 Address Bus

The address bus contains the nescessary data lines for addressing the individual reg-
isters of the Serial connection and the UART. On any modern system this bus is from
16 to 64 bits wide. For our implementation the bus size was chosen to be 8 bit, which
is multiple times the amount of needed address space, but is the smallest addressable
unit on most microcontroller architectures and therefore easy to program with. The ad-
dress bus is unidirectional.

2.2 Data Bus

The data bus contains the actual data to be stored to and read from registers. The data
bus is, as well on most systems a multiple of 16 bits wide, but for the same reasons as
the data bus, was shrunk down in our case to 8 bits. The data bus is bidirectional.

2.3 Control Bus

Control bus is a term which referes to any control lines (such as read and write lines
or clock lines) which are neither address nor data bus. The control bus in our case is 5
bits wide and consists of:

• MR ... Master Reset

• ¬WR ... Write Not

• ¬RD ... Read Not

• ¬MS1 ... Module Select 1 Not

• ¬MS2 ... Module Select 2 Not

2.3.1 Master Reset

A high level on the MR lane signals to the peripherials that a reset of all registers and
states should occure. This is needed for the serial console and the DAC.

Daniel Plank Address Bus 3

2.3.2 Write Not

A low level on the ¬WR lane signals the corresponding modules that the data on the
data bus should be written to the register on the address specified from the address
bus.

2.3.3 Read Not

A low level on the ¬RD lane signals the corresponding modules that the data from the
register specified by the address on the address bus should be written to the data bus.

2.3.4 Module Select 1 and 2 Not

A low level on one of these lines signals the corresponding module that the data on
address data and the control lines is meant for it.

2.4 Testing and Measurement

For functional testing and verification of implementation goals measurements needed
to be performed in various different ways and testing software was required.

2.4.1 Measurements

Measurements were performed, if not noted otherwise, with the Analog Discovery 2
from Digilent as it has 16bit digital I/O Pins as well a a Waveform generator and 2 dif-
ferential oszilloscope inputs[1]. These were enough for all nescessary measurements.
Though due to the size and construction of the device, which can be seen in figure iii,
errors were encountered while performing the measurements. These are noted on oc-
curance.

Daniel Plank Write Not 4

Figure iii: Digilent Analog Discovery 2;Source: https://www.sparkfun.com/

2.4.2 Testing

All testing was performed with an Atmel ATMega2560 due to it’s large amount of I/O
pins, 5V I/O, which is the more common voltage level on CMOS peripherials, way of
addressing pins (8 at a time) and availability. [2] All testing software was written for this
ATMega and compiled using the avr-gcc from the GNU-Project.

To fully test the developed modules on the backplane a seprate module for the ATMega
was developed, which can be seen in figure iv. The ATMega is beneath the the black
PCB B in the center, which is an ArduinoTMMega. The ArduinoTMis, for all indends and
purposes, only a breakout of the ATMega 2560 and has only been used in that way.
No parts of the ArduinoTMIDE or other parts of the ArduinoTMsoftware suite have been
used, as they consume too much memory and the abstraction models used are not
compatiable with building processor peripherials.

BPrinted circuit board

Daniel Plank Testing 5

https://www.sparkfun.com/

Figure iv: The ATMega 2560 module for the backplane

Daniel Plank Testing 6

2.5 Backplane

To connect the modules to the microprocessor, many pins need to be connected
straight through. For this purpose a backplane was chosen where DIN41612 con-
nectors can be used. These connectors were chosen for their large pin count (96 pins)
and their availability. The backplane connects all 96-pins straight through. With the 6
outer left and right pins connected for VCC and ground as can be seen in figure v.

Figure v: Layout of the DIN41612 Connectors on the Backplane

2.5.1 Termination resistors

In constrast to other systems using this backplane no termination resistors were used.
This makes the bus more prone to refelctions, however these were not a problem during
development with the maximum transmission rate of 1MHz, as can be seen in the
sample recording in figure vi

Daniel Plank Backplane 7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·10−6

0

2

4

Time

Vo
lta

ge
on

M
S

1

Figure vi: Measurement at around 1MHz bus clock on MS1

The ripple seen in figure vi is most likely due to the sample rate of the Oszilloscope,
which is around 10Mhz after an average filter has been applied. The measurement
was performed on the finished project with all cards installed.

2.6 Case

The case for the backplane was provided by the hackerspace and is meant for instal-
lation in a rack. The case is meant for installation of cards in the EUROCARD format,
therefore all modules were built by this formfactor.

Daniel Plank Case 8

Figure vii: The case with installed backplane

Daniel Plank Case 9

2.7 Serial Console

One core part of any computer systems is it’s way to get human input. On older sys-
tems, and even today on server machines, this is done via a serial console. On this
serial console characters are transmitted in serial, which means bit by bit over the same
line. The voltage levels used in these systems vary from 5V to 3.3V or +-10V. The
most common standard for these voltage levels is the former RS-232C or as it should
be called now, TIA-D/EIA-E232.[3] Voltage-levels ,as per TIA-/EIA- standard, are not
practical to handle over short distances however, so other voltages are used on most
interface chips and need to be converted.

2.7.1 16550 UART

The 16550 UARTF is a very common interface chip for serial communications. It pro-
duces 5V logic levels as output on TX and needs the same as input on RX. Though
common for a UART, these voltage levels need to be converted to TIA-/EIA-232 levels
for a more common interface.

The 16550 UART is in it’s core a 16450 UART, but has been given a FIFO G buffer. It
needs three address lines, and 8 data lines, which can be seen in figure viii

Figure viii: PC-16550D Pinout[4]

CRS... Recommended Standard
DTIA...Telecommunications Industry Association
EEIA.. Electronic Industries Alliance
FUinversal Asynchronous Receiver and Transmitter
GFirst-In First-Out

Daniel Plank Serial Console 10

In figure viii the most important lanes are the SIN and SOUT lanes, as they contain the
serial data to and from the 16550 UART.

2.7.2 MAX-232

To convert the voltage levels of the 16550 UART to levels compliant with TIA-/EIA-232
levels the MAX-232 is used. It has two transmitters and two receivers and generates
the needed voltage levels via an internal voltage pump[5].

2.7.3 Schematics

Based on the descriptions in the datasheets, the schematic in figure ix was developed.

Daniel Plank MAX-232 11

Figure ix: The schematic of the UART Module

Daniel Plank Schematics 12

Element Description The quartz oszillator Y1 is the clock source for the Baud Rate
generation and was chosen with 1.8432 MHz for availability reasons and because it is
the lowest ozillator from which all common baud rates can still be derived [4]. Resis-
tors R1 and R2 are for stability and functionality of the Oszillator nescessary as per
datasheet. The resulting frequency can be measured via J1 as can be seen in figure
x. C1 is used to stabilize the voltage for the 16550 UART and is common practice. Via
JP1 the UART can be transformed into a USRT, where the receiver is synchronized to
the transmitter via a clock line. This mode has, however, not been tested, and the clock
needs to be 16 times the receiver clock rate[4]. The final output of the 16550 UART
can be used and measured via J2, as shown in figure xi . Before the UART on J2 can
be used however, the Jumpers JP2 and JP3 need to be removed, as otherwise the
MAX-232 will short out with the incoming signal. Capacitors C4, C6, C7 and C8 are
for the voltage pump as defined in the datasheet[5]. R4 and R5 have been suggested
by the supervisor in order to avoid damage to the MAX-232. The RJ-45 plug is used
to transmit the TIA-/EIA-232 signal, rather than the more common D-SUB connector,
because the RJ-45 connector fits on a 2.54mm grid. The Pinout of the RJ-45 plug can
be seen in figure xii. C5 has the same functionality for the MAX-232 as the C1 has to
the 16550-UART.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·10−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Time

Q
ua

rt
z

Vo
lta

ge

Figure x: Measurement of the 1.8432 MHz Output on J1

Daniel Plank Schematics 13

−4 −3 −2 −1 0 1 2 3 4 5 6
·10−4

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time

La
ne

Vo
lta

ge
TIA-/EIA-232 level

UART level

Figure xi: Measurement of a character transmission before and after MAX-232

Figure xii: Pinout of the RJ-45 Plug; Src: https://www.wti.com/

Daniel Plank Schematics 14

https://www.wti.com/

2.7.4 Demonstration Software

To demonstrate the functionality and prove that the schematic has no underlying error,
a program which regularly transmits a character was written as well as a simple echo
program, which transmits all received characters. Both programs transmit 8 bit charac-
ters without parity at 38400 Baud. The output for program one can be seen in figure xi
and the output for program two in figure xiii.

−3 −2 −1 0 1 2 3 4 5 6 7 8 9
·10−4

−6

−4

−2

0

2

4

6

Time

La
ne

Vo
lta

ge

RX
TX

Figure xiii: Measurement of a character echo

Transmit code The transmit code regularly transmits the letter capital A via the
16550 UART. Before it can do this it needs to perform some initialisations. The func-
tions shown in listing I are the read and write routines for accessing the 16550 UART.
These routines also apply to the echo code.� �

1 #define F_CPU 16000000UL

2

3 #include <stdint.h>

4 #include <util/delay.h>

5

6 #define BUS_HOLD_US 1

Daniel Plank Demonstration Software 15

7

8 /* Shift values inside the PORTL Register */

9 #define WR_SHIFT 1

10 #define RD_SHIFT 2

11 #define MR_SHIFT 0

12 #define CS_SHIFT 3

13 #define CS_ADC_SHIFT 4

14

15 /* Registers in the 16550 UART */

16

17 #define UART_REG_DLLS 0

18 #define UART_REG_DLMS 1

19 #define UART_REG_TXRX 0

20 #define UART_REG_IER 1

21 #define UART_REG_IIR 2

22 #define UART_REG_LCR 3

23 #define UART_REG_MCR 4

24 #define UART_REG_LSR 5

25 #define UART_REG_MSR 6

26 #define UART_REG_SCR 7

27

28 void set_addr(uint8_t addr){

29

30 PORTK = addr;

31 return;

32 }

33

34 void write_to_16550(uint8_t addr, uint8_t data){

35

36

37 set_addr(addr);

38 DDRF = 0xFF;

39 PORTL &= ~(1<<WR_SHIFT);

40 PORTF = data;

41 PORTL &= ~(1<<CS_SHIFT);

42

43 _delay_us(BUS_HOLD_US);

44

45 PORTL |= 1<<CS_SHIFT;

46 set_addr(0x00);

47 PORTL |= 1<<WR_SHIFT;

48 PORTF = 0x00;

49 return;

50 }

51

52 uint8_t read_from_16550(uint8_t addr){

53

Daniel Plank Demonstration Software 16

54 uint8_t data = 0x00;

55 set_addr(addr);

56 DDRF = 0x00;

57 PORTF = 0x00;

58 PORTL &= ~(1<<RD_SHIFT);

59 PORTL &= ~(1<<CS_SHIFT);

60 _delay_us(BUS_HOLD_US);

61 data = PINF;

62 PORTL |= 1<<CS_SHIFT;

63 set_addr(0x00);

64 PORTL |= 1<<RD_SHIFT;

65 DDRF = 0xFF;

66 PORTF = 0x00;

67 _delay_us(BUS_HOLD_US); /*Wait for the data and signal lanes to become

stable*/

68 return data;

69 }
� �
Listing I: Read and write routines for the 16550 UART

To write to the 16550 UART, you need to perform some setup tasks. After startup, it
requires a MR for at least 5ţs[4]. The baud rate divisor latch needs to be set to the
specified divisor for the desired baud rate, and the character width and parity control
needs to be set. The MR signal is beeing generated by the AVR on bootup. To access
the divisor latch, the divisor latch access bit needs to be set and after setting up the
baud rate divisor latch, it nees to be cleared to allow a regular transmission. This
process can be seen in listing II� �

1 int main(){

2

3 /* Disable interrupts during initialisation phase */

4 cli();

5

6 /* Setup Data Direction Registers and populate with sane default

7 values */

8 DDRF = 0xFF; /* Data Bus */

9 DDRK = 0xFF; /* Address Bus */

10 DDRL = 0xFF; /* Control Bus */

11 PORTF = 0x00;

12 PORTK = 0x00;

13 PORTL = 0x00;

14

15 /* Cleanly reset the 16550 uart */

16 PORTL |= (1<<WR_SHIFT);

17 PORTL |= (1<<RD_SHIFT);

18 PORTL |= (1<<CS_SHIFT);

Daniel Plank Demonstration Software 17

19 PORTL |= (1<<MR_SHIFT);

20 _delay_us(100);

21 PORTL &= ~(1<<MR_SHIFT);

22 _delay_us(1000);

23

24 sei();

25

26 for(;;){

27 write_to_16550(UART_REG_LCR,0x83);

28 write_to_16550(UART_REG_DLLS,0x03);

29 write_to_16550(UART_REG_DLMS,0x00);

30 write_to_16550(UART_REG_LCR,0x03);

31 write_to_16550(UART_REG_TXRX,’A’);

32 _delay_us(10000);

33 }

34

35 return 0;

36 }
� �
Listing II: 16550 INIT routines and single char transmission

The output of this code on the address, data and control bus as well as on the SOUT
lane of the 16550 UART can be seen in figure xiv

Figure xiv: Transmission of character A via the 16550 UART

Echo code The echo code permanently polls the 16550 UART wether a character
has been received, and if yes, reads it from the receiver holding register and writes it
back to the tx holding register. The output of this code can be seen in figure xiii. The

Daniel Plank Demonstration Software 18

initialisation is practically the same as for the transmission code, as well as the read
and write routines in listing I.� �

1 int main(){

2

3 /* Disable interrupts during initialisation phase */

4 cli();

5

6 /* Setup Data Direction Registers and populate with sane default

7 values */

8 DDRF = 0xFF; /* Data Bus */

9 DDRK = 0xFF; /* Address Bus */

10 DDRL = 0xFF; /* Control Bus */

11

12 /* Cleanly reset the 16550 uart */

13 PORTL |= (1<<WR_SHIFT);

14 PORTL |= (1<<RD_SHIFT);

15 PORTL |= (1<<CS_SHIFT);

16 PORTL |= (1<<CS_ADC_SHIFT);

17 PORTL |= (1<<MR_SHIFT);

18 _delay_us(100);

19 PORTL &= ~(1<<MR_SHIFT);

20 _delay_us(1000);

21

22 write_to_16550(UART_REG_LCR,0x83);

23 write_to_16550(UART_REG_DLLS,0x03);

24 write_to_16550(UART_REG_DLMS,0x00);

25 write_to_16550(UART_REG_LCR,0x03);

26 for(;;){

27 if(read_from_16550(UART_REG_LSR) & 0x01){

28 write_to_16550(UART_REG_TXRX,

29 read_from_16550(UART_REG_TXRX));

30 }

31 }

32

33 return 0;

34 }
� �
Listing III: 16550 character echo

2.7.5 Final Module

The final module can be seen in figure xv with the pc16550 UART in the center and the
MAX-232 above.

Daniel Plank Final Module 19

Figure xv: The final uart module with the pc16550 uart in the center

Daniel Plank Final Module 20

2.8 Audio Digital-Analog-Converter

A digital to analog converter takes a digital number and converts it to a analog signal.
The output of one such conversion is called a sample. With enough samples per
second various different waveforms can be produced, which, when amplified and put
onto a speaker, can be heared by the human ear as a tone. With various tones in
series a melody can be produced, which is what the DAC in this implementation does.

2.8.1 TLC 7528 Dual R2R Ladder DAC

The TLC 7528 is a Dual output parallel input R2R Ladder DAC with a maximum sample
rate of 10MHz [6], and which (should be) is monotonic over the entire D/A Conversion
Range. The TLC-7528 was the only component chosen, where availability was not
a factor, but rather it’s design. It is the cheapest dual R2R Ladder dac which takes
PARALLEL input, which is an important feature, because the backbone of the project
is its parallel bus. Further the DAC was developed for audio aplications[6] which made
its use obvious and the TLC-7528 was the only IC available as DIP H, of which the
pinout can be seen in figure xvi

Figure xvi: TLC-7528 Pinout[6]

HDIP... Dual Inline Package

Daniel Plank Audio Digital-Analog-Converter 21

2.8.2 IDT7201 CMOS FIFO Buffer

The IDT7201 is an asychronous CMOS FIFO, which means that it can be read with
a completely independant speed from which it is written and vice versa. It has 9 bit
words, which can be seen in figure xvii, and can store up to 256 words[7]. It is used
as a buffer to store data describing the targeted waveform in order to free time on the
parallel bus for interaction with the 16550 UART.

Figure xvii: IDT-7201 Pinout[7]

2.8.3 Theory verfication

Before tests of the complete unit were conducted, the functionality of the device and the
validity of the knowledge of operations were performed. For that the DAC was directly
connected to the ATMega without the FIFO in front of it. A saw was generated on only
the DACA channel, which was put into voltage mode as described in the datasheet[6]
and seen in figure xviii. After the result seen in figure xix was measured, a lot of effort
was put in to determine the source of the heavy noise, however no obvious conclusions
can be made, execpt that it comes from the DAC itself and is consistant over whatever
frequency used. A damaged IC could be the reason or a sloppy production progress.
Filters can be used to reduce the noise, however this was not done in this thesis, as the
generated audio does not seem to suffer from these non-linearities as badly as when
measured standalone.

Daniel Plank IDT7201 CMOS FIFO Buffer 22

Figure xviii: TLC-7528 in voltage modet[6]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
·10−4

0

0.5

1

1.5

2

Time

R
E

FA
Vo

lta
ge

Figure xix: Measurement of a generated SAW signal via the TLC7528

2.8.4 Schematics

Based on the descriptions in the datasheets the schematic in figure xx was developed.

Daniel Plank Schematics 23

Figure xx: The schematic of the DAC Module

Daniel Plank Schematics 24

Element Description Diodes D1 through D4 are used as OR-Gates in conjunction
with R1 and R2 to generate the ¬MODRD and ¬MODWR signals for the D Flip-Flop I

and FIFO respectively, by these formulas:

¬MODRD = ¬RD ∨ ¬MS2

¬MODWR = ¬WR ∨ ¬MS2

On a read access the output enable of the D-Latch becomes low, which writes the
status bits of the FIFO onto the data bus. C1, C2 and C3 are for stability reasons
and are good practice similar to the UART module. 74HC00 is a quad NAND-Gate[9]
which is only used for inversion, chosen, like the 74HC374, for availability reasons.
The A part of the NAND-Gate inverts the MR signal from the bus to a ¬MR signal, as
the FIFOs reset is low active. The B part of the NAND-Gate inverts the FIFO Empty
flag. It’s output is connected to the ¬WR input of the DAC, which means that the DAC
doesn’t convert the input anymore, if the FIFO Empty flag is set to low.

The NE555 generates the audio clock signal, which should be the double of 44.1kHzJ

as 44.1kHz is the standard samling rate of CD-Audio[10]. Resistors R9 and R10 toge-
hter with C7 form the Oscillator part of the NE55. C4 is for stability reasons and doesn’t
define the frequency of the oscillator.

The generated clock is used for the ¬RD of the FIFO and inverted on the DAC, which
makes the data available on the output before being stored into the DAC as it receives
the signal to store the data after the FIFO makes it available on the bus.

The DAC is operated in voltage mode as described in xviii, with it’s voltage source bee-
ing available at either 3.472Vpp for professional audio or 0.894Vpp for consumer audio,
as defined per convention.[11] The voltage source can be controlled via Jumper JP1.

C5 and C6 together with the load resistance on the audio jack form a high pass with a
cutoff frequency of

fC =
1

2πRC =
1

2×π×10KΩ×100µF = 0.159154943Hz

which should cover the hearable spectrum. The high pass was needed to generate a
positive and negative half of the wave form, as the DC-Offset with a frequency of 0Hz
is orders of magnitudes lower than the fC of the highpass gets filtered away.

R7 and R8 have been installed in order to unload the capacitors after device poweroff.
I74HC374[8]
JBecause we have 2 output channels

Daniel Plank Schematics 25

NE55 Clock Source Though used as a clock source, the NE555 is a bad clock
source, if a stable frequency is needed, because it varies widely with temperature,
preasure and ageing elements. A better solution would have been a quartz, which
is divided down to the desired frequency, which was what CD-Drives used to do, but
more commonly in modern CD Drives, an ASIC K with an internal PLL is used, thus the
required quartz can no longer be sourced via conventional electronic resellers.

2.8.5 Demonstration Software

SAW Generator To prove that read and write access from the D Flip-Flop and the
FIFO are working, the same saw signal has been generated as in figure xix , however
the signal was put into the FIFO and not the DAC directly. The resulting saw wave
can be seen in figure xxi together with the FIFO Empty flag. The FIFO Empty flag, as
explained before, is inverted and starts/ends the complete D/A conversion, until further
data is received.

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
·10−2

0

1

2

3

4

5

Time

R
E

FA
Vo

lta
ge

REFA
¬EF

Figure xxi: Measurement of a generated SAW signal with the FIFO Empty flag

The time difference betwen a store and complete write cycle can be seen in figure xxiii,
while figure xxii shows the transmission between dac and fifo in more detail.

KASIC...Application-specific integrated circuit

Daniel Plank Demonstration Software 26

Figure xxii: A transmission between the FIFO and the DAC

Figure xxiii: A fifo store operation in contrast to the load operation

The initialisation routines and read/write operations for the DAC module are basically
the same as for the UART module, and have thus been ommitted. They can be seen
in listing II.� �

1 int routine(){

2

Daniel Plank Demonstration Software 27

3 for(uint8_t i = 0; i < 0xFF; i++){

4 write_to_dac(0x00, i);

5 }

6

7 write_to_dac(0x00, 0x00);

8

9 _delay_ms(10);

10 return 0;

11 }
� �
Listing IV: SAW Generation for the DAC with FIFO

Sine Generator As a further example a sine was generated and played on the DAC.
The ATMega itself is not powerful enough to generate the sine on the fly, therefore
a lookup-table had to be generated, which can be seen in listing V. How the data is
transmitted to the FIFO can be seen in listing VI and figure xxiv, and the resulting sine
on both output channels can be seen in figure xxv.� �

1 /* Generate sine table */

2 uint8_t sine_table[256];

3 for(size_t i = 0; i < 256; i++){

4 sine_table[i] = 0xFF&((int)((sin(i/((double)255)*(3.141592*2))*
5 127.5+127.5)));

6 }
� �
Listing V: Sine LUT Generation

The look-up table has a size of 256, which is the maximum value an 8 bit integer can
take. This size was chosen to make operation faster as it only takes one cycle to load
an array value into a register and another one to store it into the GPIO register. The
sine table in further examples was pre-genrated on the compiling host to reduce startup
time. The mothod shown in listing V is not fast due to the lack of a floating point unit on
the AVR. [2]� �

1 int routine(){

2

3 for(uint8_t i = 0; i < 0xFF; i++){

4 write_to_dac(i%2, sine_table[i]);

5 }

6

7 write_to_dac(0x00, 0x00);

8 write_to_dac(0x01, 0x00);

9

10 _delay_ms(10);

11 return 0;

Daniel Plank Demonstration Software 28

12 }
� �
Listing VI: DAC Sine Generation

Figure xxiv: Storage and retrieval of a sine to and from the FIFO

−1.6−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·10−3

−1

0

1

2

Time

C
ha

nn
el

Vo
lta

ge

DACA
DACB

Figure xxv: Measuremet of the generated sine from the sine LUT on DACA and DACB

Daniel Plank Demonstration Software 29

3 Addressing DACA and DACB

The DAC used has 2 output channels which can be selected by the ¬DACA/DACB pin
as seen in figure xvi. This pin was mapped to bit 0 of the address bus in order to make
use of it. Bit 8 on the fifo was used to store the bit. It was not implemented with half the
bus clock to make both channels independent of each other. This however uses more
time on the backend because it means the fifo is used up at twice the speed. No current
example makes use of this, but it may be used in future examples and implementations
on this unit.

On the audio jack DACA is mapped to the right channel and DACB to the left channel.

3.0.1 Final Module

The final module can be seen in figure xxvi with, from bottom to top, the 74HC374 D-
Flip-Flop, the IDT-7201 FIFO, the 74HC00 NAND-Gates, the TLC-7528 DAC and the
NE555 oszillator. The jumper on the left is the voltage select and the jumper on the
right the clock select. The two pin headers on the top have been installed for voltage
measurement on the left and right audio channels while the audio jack is in use.

Daniel Plank Addressing DACA and DACB 30

Figure xxvi: The final DAC module

3.1 FPGA to Hardware interface

To make the Hardware work with the FPGA’s 3.3V I/O, level shifter have been installed
and a FPGA module was built. This module maps the IO/Pins in a similar way to the
ATMega 2560 used in examples before. The bidirectional 5V<->3.3V logic level con-
verters have been obtained on amazon, and have not been well documented. Their
functionality has been tested and verified in both directions, which can be seen in fig-
ures xxvii and xxviii. The schematic has also been determined through measurements
with a multimeter and the schematic in figure xxix shows similar resistor values in the
same configuration [12].

Daniel Plank FPGA to Hardware interface 31

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·10−6

−1

0

1

2

3

4

5

Time

La
ne

Vo
lta

ge
LV-Side
HV-Side

Figure xxvii: 3.3V to 5V conversion using the level shifter

The in figure xxvii shown output on the HV side, corresponds with the schematics in
figure xxix where it can be seen that the resistor R2 is loading the bus capacitance to
a 5V high state.

Daniel Plank FPGA to Hardware interface 32

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
·10−6

−1

0

1

2

3

4

5

6

Time

La
ne

Vo
lta

ge
LV-Side
HV-Side

Figure xxviii: 5V to 3.3V conversion using the level shifter

Figure xxix: The internal schematics of the level shifter[12]

Daniel Plank FPGA to Hardware interface 33

3.1.1 Measurement error

During an attempt to measure wether the level shifters in the final module were working,
a measurement between the LV and the HV side showed only a difference of 0.7V. After
some troubleshooting, it was found that the Analog Discovery has clamping diodes
against the 3.3V rail shown in figure xxx. These diodes produce the 0.7V offset and
prevent the parallel bus from rising to 5V when a digial I/O pin of the Analog Discovery
2 is connected to the bus. [13].

Figure xxx: The internal clamping diodes of the Analog Discovery 2[1]

4 Textadventure

To illustrate how the components work together and can be used in various different
applications, a small text-adventure with audio effects was written in C. The main goal
was to show the capabilities of even small systems like the one developed.

Daniel Plank Measurement error 34

4.1 General Implementation details

4.1.1 General definitions and pinout of the AVR

Like the before examples, the textadventure was implemented on an ATMega2560 and
uses 3 different Registers for transmission: PORTF, PORTK and PORTL for address
bus, data bus and control bus respectively, as can be seen in listing VII

Daniel Plank General Implementation details 35

� �
1 /* Copyright (C) 2020 tyrolyean

2 *
3 * This program is free software: you can redistribute it and/or modify

4 * it under the terms of the GNU General Public License as published by

5 * the Free Software Foundation, either version 3 of the License, or

6 * (at your option) any later version.

7 *
8 * This program is distributed in the hope that it will be useful,

9 * but WITHOUT ANY WARRANTY; without even the implied warranty of

10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

11 * GNU General Public License for more details.

12 *
13 * You should have received a copy of the GNU General Public License

14 * along with this program. If not, see <http://www.gnu.org/licenses/>.

15 */

16

17 #ifndef _AVR_H_TEXT

18 #define _AVR_H_TEXT

19

20

21

22 #define F_CPU 16000000UL

23 #include <avr/io.h>

24

25 /* Shift values for the peripherials on the control bus PORTL */

26

27 #define MR_SHIFT 0

28 #define WR_SHIFT 1

29 #define RD_SHIFT 2

30 #define CS_UART_SHIFT 3

31 #define CS_DAC_SHIFT 4

32

33 #define ADDR_REG PORTK

34 #define DATA_REG PORTF

35 #define CTRL_REG PORTL

36

37 #define ADDR_DDR_REG DDRK

38 #define DATA_DDR_REG DDRF

39 #define CTRL_DDR_REG DDRL

40

41 /* Included here to prevent accidental redefinition of F_CPU */

42 #include <util/delay.h>

43

44 /* Time it takes for the bus lanes to become stable for read and write

access */

45 #define BUS_HOLD_US 1

Daniel Plank General definitions and pinout of the AVR 36

46

47 void set_addr(uint8_t addr);

48

49 #endif
� �
Listing VII: The avr.h header file

The in listing VII shown preprocessor macros MR_SHIFT, WR_SHIFT, RD_SHIFT,
CS_UART_SHIFT and CS_DAC_SHIFT are used to indicate the position of the cor-
responding control lines inside the control bus register. All other shift values are the
same bitordering in input as in output.

The BUS_HOLD_US is used to tell the avr how many microseconds it takes for the
data bus to be latched into input register of the devices on write or how long it takes
for the data bus to become stable on read. A delay of less than 1 microsecond is not
possible due to limitations of the AVR and the bus capacity, which increases the BERL

to a level which effects regular operation.

4.1.2 Read and Write routines

The set_addr function is the same as in the UART example code in listing I and has
therefore been omitted, execept for its definiton in the avr.h file in listing VII. The read
and write functions for the UART module and the DAC module are the same as in the
example code for the modules and have been ommited therefore as well.

4.1.3 UART and DAC update polling

The AVR constantly polls the DAC and UART modules for updates as can be seen in
listing VIII. The routine_MODULE functions poll their respective modules for updates
as can be seen in listings IX and X. When a character is received, it is stored inside
a bufer array and regular operation continues. If the ¬EF status bit is set in a read
from the dac, the feed_dac function is called which stores 256 bytes into the DAC and
regular operation continues.� �

1

2 int routine(){

3 routine_dac();

4 routine_uart();

5 routine_game();

LBER...Bit Error Ratio

Daniel Plank Read and Write routines 37

6 return 0;
� �
Listing VIII: The routine function looped by the main� �

1 void routine_uart(){

2

3 uint8_t received = read_from_uart(UART_REG_LSR);

4 if(received & 0x01){

5 received = read_from_uart(UART_REG_TXRX);

6 ingest_user_char(received);

7 if(received == ’\r’){

8 writechar_16550(’\n’);

9 }

10 writechar_16550(received); /* Echo back */

11 }

12

13 return;

14 }
� �
Listing IX: The routine function for the UART� �

1 void routine_dac(){

2

3 uint8_t received = read_from_dac(0x00);

4 if(!(received & (0x01<<0))){

5 feed_dac();

6 }

7 return;

8 }
� �
Listing X: The routine function for the DAC

4.1.4 Program execution path

On microprocessors it is required to not leave a return path for programs, as a return
path would lead to the microcontroller either resetting, or seicing to work until the next
power cut. Therefore the program performs all it’s tasks in an infinte loop. This loop
can be seen in listing VIII and in figure xxxi.

Daniel Plank Program execution path 38

INITIALISATION ROUTINES

Read from UART
Line Status Register

Is Data in Rx Latch? Process input user character

Get DAC Status

Is FIFO Empty

YES

NO

Fill fifo with sound data

Process User input

Has command been
fully received Process command

NO

YES

YES

NO

Figure xxxi: A Flow-Chart of the program execution path

Daniel Plank Program execution path 39

4.2 DAC sound generation

4.2.1 DAC modes

The DAC can produce any waveform described by 8 bit unsigned PCM code. Though
possible to feed predefined waveforms into the DAC, the AVR doesn’t have enough
onboard memory to store more than a few seconds of these waveforms.

For example to store one second of 8 bit unsigned PCM Code at 2 times 44.1KHz
sampling rate of the DAC, the AVR would have to store s = 2 × 44100Bytes

s ∗ 1s = 2 ×
44100Bytes = 88.2KB, but it has only a total of 256KB of onboard flash[2] which makes
for a total track lengh of t = 256KB

88.2 KB
s
= 2.9s with only one track.

Therefore the AVR generates the audio on runtime. To do that it has 6 builtin modes in
which it can run, as can be seen in listing XI:

1. silent mode: The DAC produces no output at all and is completely silent.

2. sine mode: The DAC produces a sine with a specific frequency and an amplitude
of 255.

3. square mode: The DAC produces a square wave with a specific frequency and
an amplitude of 255.

4. saw mode: The DAC produces a saw wave with a specific frequency and an
amplitude of 255.

5. noise mode: The DAC produces a pseudo-random white-noise with a maximum
amplitude of 255.

6. triangle mode: The DAC produces a triangle wave with a specific frequency and
an amplitude of 255.

To perform these tasks the DAC takes two parameters, again seen in listing XI:

• A frequency deviation: Used to tell the dac how much the desired frequency
deviates from the base frequency of each waveform.

• A mode: Used to tell it which waveform to generate

Daniel Plank DAC sound generation 40

� �
1 /* The operation modes of the dac used for generation of different tones */

2 #define DAC_MODE_SILENT 0

3 #define DAC_MODE_SINE 1

4 #define DAC_MODE_SQUARE 2

5 #define DAC_MODE_SAW 3

6 #define DAC_MODE_NOISE 4

7 #define DAC_MODE_TRIANGLE 5

8

9 extern uint8_t dac_mode;

10 /* This variable is used to deviate the frequency from the baseline

frequency

11 * of around 1kHz. If this integer is positive it makes the produced

waveform

12 * longer, if it is negative the produced waveform becomes less sharp, but

the

13 * frequency goes up. 0 is the baseline */

14 extern int16_t dac_frequency_deviation;
� �
Listing XI: The DAC operation modes� �

1 void feed_dac(){

2 /* Internal counter for positioning inside the currently playing

3 * waveform */

4 static uint8_t threash = 0x00;

5 /* Used to generate the desired frequency offset if the waveform should

6 * be made "longer" --> the frequency made lower from baseline

7 */

8 static int16_t freq_delay_cnt = 0x00;

9 switch(dac_mode){

10

11 default:

12 case DAC_MODE_SILENT:

13 for(uint8_t i = 0; i < 0xFF; i++){

14 write_to_dac(i%2, 0);

15 }

16

17 break;

18

19 case DAC_MODE_SINE:

20 /* Generates a sine from a predetermined sine table in program

21 * space */

22 for(uint8_t i = 0; i < (0xFF/2); i++){

23 write_to_dac(1,

24 pgm_read_byte(&sine_table[threash]));

25 write_to_dac(0,

26 pgm_read_byte(&sine_table[threash]));

27

Daniel Plank DAC modes 41

28 if(dac_frequency_deviation >=0){

29 freq_delay_cnt++;

30 if(freq_delay_cnt >=

31 dac_frequency_deviation){

32 freq_delay_cnt = 0;

33 threash++;

34

35 }

36

37 }else{

38 threash -= dac_frequency_deviation;

39 }

40

41 }

42 break;

43 case DAC_MODE_SQUARE:

44 /* Generates a square wave tone */

45 for(uint8_t i = 0; i < (0xFF/2); i++){

46 if(threash > (0xFF/2)){

47 write_to_dac(0, 0xFF);

48 write_to_dac(1, 0xFF);

49 }else{

50 write_to_dac(0, 0);

51 write_to_dac(1, 0);

52 }

53 if(dac_frequency_deviation >=0){

54 freq_delay_cnt++;

55 if(freq_delay_cnt >=

56 dac_frequency_deviation){

57 freq_delay_cnt = 0;

58 threash++;

59

60 }

61

62 }else{

63 threash -= dac_frequency_deviation;

64 }

65 }

66 break;

67 case DAC_MODE_SAW:

68 /* Generates a saw wave tone */

69 for(uint8_t i = 0; i < (0xFF/2); i++){

70 write_to_dac(0, threash);

71 write_to_dac(1, threash);

72 if(dac_frequency_deviation >=0){

73 freq_delay_cnt++;

74 if(freq_delay_cnt >=

Daniel Plank DAC modes 42

75 dac_frequency_deviation){

76 freq_delay_cnt = 0;

77 threash++;

78

79 }

80

81 }else{

82 threash -= dac_frequency_deviation;

83 }

84 }

85 break;

86 case DAC_MODE_NOISE:

87 /* Generates white noise from a predetermined LUT

88 */

89 for(uint8_t i = 0; i < (0xFF/2); i++){

90 static uint16_t noise_cnt = 0;

91 write_to_dac(1,

92 pgm_read_byte(&noise_table[noise_cnt]));

93 write_to_dac(0,

94 pgm_read_byte(&noise_table[noise_cnt]));

95

96 noise_cnt++; /* Doesn’t have frequency diversion

97 */

98 if(noise_cnt >= 1024){

99 noise_cnt = 0;

100 }

101

102 }

103 break;

104 case DAC_MODE_TRIANGLE:

105 /* Generates a triangle wave tone */

106 for(uint8_t i = 0; i < (0xFF/2); i++){

107 static int8_t direction = 1;

108 if((threash == 0xFF) | !threash){

109 direction = -direction;

110 }

111 write_to_dac(0, threash);

112 write_to_dac(1, threash);

113 if(dac_frequency_deviation >=0){

114 freq_delay_cnt++;

115 if(freq_delay_cnt >=

116 dac_frequency_deviation){

117 freq_delay_cnt = 0;

118

119 threash += direction;

120

121 }

Daniel Plank DAC modes 43

122

123 }else{

124 if((dac_frequency_deviation *
125 direction) >

126 (0xFF - threash)){

127 threash = 0xFF;

128 continue;

129 }

130 threash = (dac_frequency_deviation *
131 direction);

132 }

133 }

134 break;

135 }

136

137 return;

138 }
� �
Listing XII: The DAC waveform generation code

4.2.2 Tones and Tracks

A sound track inside the textadventure consists of independent tones. A tone is a
waveform at a specific frequency played for a specific time. To perform the specific time
functionality independant of DAC speed, an ISR M on the AVR was used to change
to the next tone every millisecond. A track is an array of tones with an end marker
tone at the end which is a tone with a length of 0ms. The end marker tone tells the ISR
to reset to the initial tone. The ISR can be seen in listing XIII and the sound update
function, which actually updates the current tone and is responsible for playing a track
in listing XIV. The output of an example track can be seen in figures xxxii and xxxiii.� �

1 ISR(TIMER0_COMPA_vect)

2 {

3 update_sound();

4 }
� �
Listing XIII: The ISR which fires every millisecond� �

1 /* Loops a track indefinitely and changes voices according to predefined

tables.

2 * A new track resets the internal state. A voice with a length of 0ms is

used

3 * to mark the end of a track and continue at the beginning

MISR...Interrupt Service Routine

Daniel Plank Tones and Tracks 44

4 */

5 void update_sound(){

6

7 static uint16_t audio_time = 0;

8 static size_t tone_pointer = 0x00;

9 static struct tone_t current_tone = {DAC_MODE_SILENT, 0,0};

10 if(current_track == NULL){

11 /* ABORT */

12 audio_time = 0x00;

13 return;

14 }

15 audio_time++;

16 static const struct tone_t * old_track = NULL;

17

18 if(audio_time >= current_tone.length ||

19 current_track != old_track){

20

21 if(old_track != current_track){

22 tone_pointer = 0;

23 audio_time = 0x00;

24 old_track = current_track;

25 }

26 memcpy_P(¤t_tone,&(current_track[tone_pointer]),

27 sizeof(current_tone));

28

29 if(current_tone.length == 0){

30 tone_pointer = 0;

31 memcpy_P(¤t_tone,&(current_track[tone_pointer]),

32 sizeof(current_tone));

33

34 }

35

36 dac_mode = current_tone.waveform;

37 dac_frequency_deviation = current_tone.frequency_deviation +

38 global_frequency_offset;

39 audio_time = 0x00;

40 tone_pointer++;

41 }

42 return;

43 }
� �
Listing XIV: The sound update function

Daniel Plank Tones and Tracks 45

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35
−0.5

−0.48

−0.46

−0.44

−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

−0.28

−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−8 · 10−2

−6 · 10−2

Track output

Ti
m

e

DACA
DACB

Figure xxxii: The output of an example track part 1

Daniel Plank Tones and Tracks 46

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Track output

Ti
m

e
DACA
DACB

Figure xxxiii: The output of an example track part 2

Daniel Plank Tones and Tracks 47

4.2.3 Track switching

To switch tracks on different actions, there is a map of tracks associated with rooms.
Every room has an associated track, where the association can change on actions
performed, which allows for a game atmosphere change. Track changes are performed
outside the ISR, which could theoretically result in a race condition where the ISR
would load a faulty track for 1ms if the track change was not performed fast enough,
but this is prevented by disabling global interrupts during a track change.

4.3 User command interpretation

4.3.1 Command structure and parsing

As in other text adventures [14] a command consits of one line of input terminated by
a newline or line feed character \n. The carriage return character which is sometimes
transmitted with a line feed character is not parsed in this text adventure. Incoming
character parsing can be seen in listings IX and XV.

As one command is parsed each part is required to be separated by an empty space
character which is ascii code 32 [15]. The first part of the given input is then compared
to an array of actions a user can perform, for example use or search, as can be seen
in listing XVI

In listing IX the comment echo back can be seen. The write_char function before it
writes the last received character back to the terminal which sent it. This is done to
write what the user typed out to the terminal as otherwise it would not be seen what
has been typed on any VT100 compatiable terminal[16] or terminal emulator.� �

1 void ingest_user_char(char in){

2 if(in == 0x7F /* DELETE CHAR */){

3 command_buffer[command_buffer_pointer--] = 0x00;

4

5 }else{

6 command_buffer[command_buffer_pointer++] = in;

7 }

8 return;

9 }
� �
Listing XV: The character ingest function

The in listing XV shown branch overrides the last received character with 0x00 which

Daniel Plank Track switching 48

is ascii NUL and decrements the buffer pointer by one if the received character was
0x7F. 0x7F is the ADCII DELETE character [15] which instructs the receiving end that
the last received character was a mistake and should be purged. This is also what a
vt100 compiant terminal emulator sends when the backspace or delete key is pressed
[16].� �

1 void routine_game(){

2

3 if(command_buffer_pointer >= sizeof(command_buffer)){

4

5 command_buffer_pointer = 0x00;

6 memset(command_buffer, 0, sizeof(command_buffer));

7

8 println("\nToo much input!");

9 return;

10 }

11

12 if(command_buffer[command_buffer_pointer-1] == ’\n’ ||

13 command_buffer[command_buffer_pointer-1] == ’\r’){

14 /* A command from the user has been received, we are ready to

15 * do something!*/

16

17 int8_t action_id = -1;

18 for(size_t i = 0; i < sizeof(action_table)/sizeof(const char*);

19 i++){

20 if(strncasecmp(action_table[i], command_buffer,

21 strlen(action_table[i])) == 0){

22 action_id = i;

23 break;

24 }

25

26 }

27 if(action_id < 0){

28 println(info_table[1]);

29 }else{

30 perform_action(action_id);

31

32 }

33

34 command_buffer_pointer = 0x00;

35 memset(command_buffer, 0, sizeof(command_buffer));

36 }

37

38 return;

39 }
� �
Listing XVI: The command parsing function

Daniel Plank Command structure and parsing 49

4.3.2 Command parameters

Command paramters are interpreted as the string that follows the action and the space
behind it. As can be seen in the case for ACTION_USE in listing XVII the use item
function is passed the command bufferN plus the length of the entered command plus
one for the space. So the string starting at the passed address should match the start
address of the parameter. If no parameter is supplied, the address should point to a
character containing ASCII NUL, which marks the end of a string, bcause after comand
parsing the string is overwritten with zeros as seen in listing XVI.� �

1 void perform_action(uint8_t action_id){

2 putchar_16550(’\n’, NULL);

3 switch(action_id){

4 default:

5 case ACTION_HELP:

6 println("You can:");

7 for(size_t i = 0; i < NUM_ACTIONS; i++){

8 println(" %s",action_table[i]);

9 }

10 break;

11

12 case ACTION_DESCRIBE:

13 describe_room(current_room, false);

14 break;

15

16 case ACTION_NORTH:

17 case ACTION_SOUTH:

18 case ACTION_WEST:

19 case ACTION_EAST:

20 move_direction(action_id -1);

21 break;

22 case ACTION_INVENTORY:

23 print_inventory();

24 break;

25 case ACTION_SEARCH:

26 print_room_item();

27 break;

28 case ACTION_TAKE:

29 consume_room_item(command_buffer+

30 strlen(action_table[ACTION_TAKE])+1);

31 break;

32 case ACTION_USE:

33 use_item(command_buffer+

34 strlen(action_table[ACTION_USE])+1);

Nwhich is an address in memory

Daniel Plank Command parameters 50

35 break;

36

37 };

38 println(info_table[3]);

39

40 return;

41 }
� �
Listing XVII: The command execution routine

4.4 Gameplay

The game itself plays like a regular game with limtations set in direction. Playeras can
search for items in each room and grab the found items as can be seen in figure xxxiv.
The general gamplay is perfomred via altering the map data and the strings output to
the user.

Daniel Plank Gameplay 51

Figure xxxiv: A regular beginning of the game

Daniel Plank Gameplay 52

4.4.1 Memory constraints

The AVR has 8kB of internal SRAM which are used for stack and heap [2]. During
the build of the program an ELF file can be obtained which contains infromation on the
programs structure and memory usage on boot. Strings and variables are contained
within the .data section of the elf file, and loaded into memory during boot[17]. This is
done for integer variables, as well as for strings, which makes the use of strings limited
not to the flash size but to the RAM size of the AVR. To save memory, sound tracks as
well as the sine and noise table have been put into program space with the PROGMEM
attribute as described by the avr-libc documentation[18]. In listing XII a read from
program memory can be seen in the noise and sine modes. Strings have not been put
into programmspace as this would require each string to be declared independantly
and then be put into arrays[18] as is done now, which would make the code much less
readable and increase overhead As well as make the usage of buffers nescessary in
order for the override of the printf function to work.

4.4.2 Story

The basics of the storyline are that you wake up in the middle of a forest and don’t
remember anything. You have to get through the forest to an old house, while having to
get rid of a bear which is blocking the way. Inside the house you have to get a computer
to start. The game then proceeds to get recursive and your goal is to break out of the
recursion.

4.4.3 Recursion

The game, when performing the recursion, resets your inventory and internal state ma-
chines, before putting you back to the starting point. However by altering the orientation
of rooms, altering the list of items found inside rooms and by altering the texts output
by the game, the atmosphere can be changed, and the outcome changed.

4.4.4 Computer State Machine

One example of a state machine inside the game is the computer inside the old-house.
The computer needs three items: a keyboard to type on, something to boot from, for
example a floppy disk, and a screwdriver to start it. The state machine implementation
can be seen in listing XVIII and the state diagram in figure xxxv.

Daniel Plank Memory constraints 53

� �
1 bool perform_computer_action(uint8_t item_id){

2

3 static bool fleshed = false;

4 if(item_id == ITEM_KEYBOARD &&

5 computer_state == COMPUTER_STATE_NOTHING){

6 computer_state = COMPUTER_STATE_KEYBOARD;

7 inventory[item_id] = false;

8 println("You connected the keyboard");

9 return true;

10 }

11

12 if(item_id == ITEM_FLOPPY &&

13 computer_state == COMPUTER_STATE_KEYBOARD){

14 computer_state = COMPUTER_STATE_FLOPPY;

15 inventory[item_id] = false;

16 println("You inseted the floppy disk");

17 return true;

18 }

19 if(item_id == ITEM_FLESH &&

20 computer_state == COMPUTER_STATE_KEYBOARD){

21 computer_state = COMPUTER_STATE_FLOPPY;

22 inventory[item_id] = false;

23 println("You inserted the flesh into the floppy drive");

24 fleshed = true;

25 return true;

26 }

27 if(item_id == ITEM_SCREWDRIVER &&

28 computer_state == COMPUTER_STATE_FLOPPY){

29 computer_state = COMPUTER_STATE_FLOPPY;

30 inventory[item_id] = false;

31 /* Perform a reset of the game */

32 println("You start the computer with the screwdriver, sit down"

33 " and watch it boot into a textadventure:");

34

35 reset_game(fleshed);

36 return true;

37 }

38

39 return false;

40 }
� �
Listing XVIII: The computer FSM

Daniel Plank Computer State Machine 54

Nothing Keyboard Bootable

else

keyboard

else

boot medium

else

screwdriver

Figure xxxv: A state diagram of the computer state machine

Daniel Plank Computer State Machine 55

Part I

A short introduction to VHDL

Designing a processor is a big task, and it’s easiest to start very small. With software
projects, this is usually in the form of a “Hello World” program - we will be designing a
hardware equivalent of this.

5 Prerequisites

Other than a text editor, the following Free Software packages have to be installed:

ghdl [19] to analyze, compile, and simulate the design

gtkwave [20] to view the simulation waveform files

yosys [21] to synthesize the design

ghdlsynth-beta [22] to synthesize the design

nextpnr-xilinx [23] to place and route the design

Project X-Ray [24] for FPGA layout data and bitstream tools

openFPGALoader [25] to load the bitstream onto the FPGA

6 Creating a design

A simple starting design is an up/down counter. The following VHDL code describes
the device:� �

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity counter is
6 port (
7 clk : in std_logic;
8 reset : in std_logic;
9 enable : in std_logic;

10 direction : in std_logic;
11
12 count_out : out std_logic_vector(7 downto 0)

Armin Brauns 56

13);
14 end counter;
15
16 architecture behaviour of counter is
17 signal count : unsigned(7 downto 0) := (others => ’0’);
18 begin
19 proc: process(clk)
20 begin
21 if reset then
22 count <= (others => ’0’);
23 elsif rising_edge(clk) and enable = ’1’ then
24 if direction = ’1’ then
25 count <= count + 1;
26 else
27 count <= count - 1;
28 end if;
29 end if;
30 end process;
31
32 count_out <= std_logic_vector(count);
33 end behaviour;� �

counter.vhd

In order to test this design, a test bench has to be created:� �
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity counter_tb is
6 end counter_tb;
7
8 architecture test of counter_tb is
9 signal clk, reset, enable, direction : std_logic;

10 signal s_count_out : std_logic_vector(7 downto 0);
11
12 signal count_out : unsigned(7 downto 0);
13 begin
14 uut: entity work.counter
15 port map (
16 clk => clk,
17 reset => reset,
18 enable => enable,
19 direction => direction,
20
21 count_out => s_count_out
22);
23
24 count_out <= unsigned(s_count_out);
25
26 simulate: process
27 begin
28 clk <= ’0’;
29 reset <= ’1’;
30 enable <= ’0’;
31
32 wait for 30 ns;
33 assert count_out = 0;
34

Armin Brauns Creating a design 57

35 reset <= ’0’;
36
37 clk <= ’0’;
38 wait for 10 ns;
39 clk <= ’1’;
40 wait for 10 ns;
41
42 assert count_out = 0;
43
44 enable <= ’1’;
45 direction <= ’0’;
46
47 clk <= ’0’;
48 wait for 10 ns;
49 clk <= ’1’;
50 wait for 10 ns;
51
52 assert count_out = 255;
53
54 direction <= ’1’;
55
56 clk <= ’0’;
57 wait for 10 ns;
58 clk <= ’1’;
59 wait for 10 ns;
60
61 clk <= ’0’;
62 wait for 10 ns;
63 clk <= ’1’;
64 wait for 10 ns;
65
66 assert count_out = 1;
67
68 wait for 30 ns;
69 wait;
70 end process;
71 end test;� �

counter_tb.vhd

7 Simulating a design

analyze the design files

ghdl -a --std=08 *.vhd

elaborate the test bench entity

ghdl -e --std=08 counter_tb

run the test bench, saving the signal trace to a GHW file

ghdl -r --std=08 counter_tb --wave=counter_tb.ghw

open the trace with gtkwave (using the view configuration in

counter_tb.gtkw)

gtkwave counter_tb.ghw counter_tb.gtkw

Armin Brauns Simulating a design 58

Figure xxxvi: Screenshot of the resulting waveform in GTKWave

8 Synthesizing a design

An additional Xilinx Design Constraints (XDC) file is required to assign the signals to
pins on the FPGA:� �

1 set_property LOC D9 [get_ports clk]
2 set_property LOC C9 [get_ports reset]
3 set_property LOC A8 [get_ports enable]
4 set_property LOC C11 [get_ports direction]
5
6 set_property LOC F6 [get_ports count_out[0]]
7 set_property LOC J4 [get_ports count_out[1]]
8 set_property LOC J2 [get_ports count_out[2]]
9 set_property LOC H6 [get_ports count_out[3]]

10 set_property LOC H5 [get_ports count_out[4]]
11 set_property LOC J5 [get_ports count_out[5]]
12 set_property LOC T9 [get_ports count_out[6]]
13 set_property LOC T10 [get_ports count_out[7]]
14
15 set_property IOSTANDARD LVCMOS33 [get_ports clk]
16 set_property IOSTANDARD LVCMOS33 [get_ports reset]
17 set_property IOSTANDARD LVCMOS33 [get_ports enable]
18 set_property IOSTANDARD LVCMOS33 [get_ports direction]
19 set_property IOSTANDARD LVCMOS33 [get_ports count_out[0]]
20 set_property IOSTANDARD LVCMOS33 [get_ports count_out[1]]
21 set_property IOSTANDARD LVCMOS33 [get_ports count_out[2]]
22 set_property IOSTANDARD LVCMOS33 [get_ports count_out[3]]
23 set_property IOSTANDARD LVCMOS33 [get_ports count_out[4]]
24 set_property IOSTANDARD LVCMOS33 [get_ports count_out[5]]
25 set_property IOSTANDARD LVCMOS33 [get_ports count_out[6]]
26 set_property IOSTANDARD LVCMOS33 [get_ports count_out[7]]

Armin Brauns Synthesizing a design 59

� �
counter.xdc

synthesize with yosys

yosys -m ghdl.so -p ’

ghdl --std=08 counter.vhd -e counter;

synth_xilinx -flatten;

write_json counter.json’

place and route the design with nextpnr

nextpnr-xilinx --chipdb xc7a35tcsg324-1.bin --xdc counter.xdc

--json counter.json --fasm counter.fasm

convert the FPGA assembly to frames

fasm2frames.py --part xc7a35tcsg324-1 counter.fasm counter.

frames

convert the frames to a bitstream

xc7frames2bit --part-name xc7a35tcsg324-1 --frm-file counter.

frames --output-file counter.bit

upload the bitstream to the FPGA

openFPGALoader -b arty counter.bit

The current value of the counter is displayed in binary on the eight LEDs on the board.
When switch 0 (enable) is in the high position, the counter can be advanced using
button 0, with the direction set by switch 1. Button 1 resets the counter to zero.

Part II

Meta

9 History

The project started out with the desire to build a CPU from scratch. Examples such
as The NAND Game[26] and Ben Eater’s Breadboard Computer series[27] served as
inspirations and guidance during development.

At first, a design similar to Ben Eater’s consisting solely of discrete integrated circuits
was considered, but soon discarded in favor of an FPGA-based design. Designing the

Armin Brauns 60

logic alone was a difficult task, implementing it in discrete hardware would have pushed
the project far over the allotted maximum development time.

RISC-V was chosen as the instruction set architecture for the processor. Its modular
design with a very small base instruction set make it easy to implement a basic pro-
cessor that is still fully compatible with existing software and toolchains.

As a starting point, a Terasic DE0 development boardO containing an Altera Cyclone
IIIP FPGA was borrowed from the school’s inventory. It was used to implement a first
version of the core.

The only method of synthesis for Altera devices is to use the proprietary Quartus IDE.
However, the last version of Quartus to support the Cyclone III series of FPGAs (ver-
sion 13.1) had already been out of date for several years at the start of the project.
Because of this and the increasing resource demand of the developing core, an Arty
A7-35T development boardQ with a Xilinx Artix-7R FPGA was ordered from Digilent.

The two FPGAs compare as follows:

Altera EP3C16 Xilinx XC7A35T
Logic Elements 15000 33280
Multipliers 56 90
Block RAM (kb) 504 1800
PLLs 4 5
Global clocks 20 32

The periphery on the development boards:

Terasic DE0 Digilent Arty A7-35T
Switches 10 4
Buttons 3 4
LEDs 10 + 4x 7-segment 4 + 3 RGB
GPIOs 2x 36 4x PMOD + chipKIT
Memory 8MB SDRAM 256MB DDR3L
Others SD card, VGA Ethernet

While the Digilent board offers fewer IO options, the DDR3 memory can be interfaced
using Free memory cores and allows for much larger programs to be loaded, possibly

Ohttps://www.terasic.com.tw/cgi-bin/page/archive.pl?No=364
Phttps://www.intel.com/content/www/us/en/products/programmable/fpga/

cyclone-iii.html
Qhttps://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-

for-makers-and-hobbyists/
Rhttps://www.xilinx.com/products/silicon-devices/fpga/artix-7.html

Armin Brauns History 61

https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=364
https://www.intel.com/content/www/us/en/products/programmable/fpga/cyclone-iii.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/cyclone-iii.html
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html

even a full operating system. The missing VGA port has been substituted by a HDMI-
compatible DVI interface that is accessible through one of the high-speed PMOD con-
nectors.

10 Tooling

FPGA design is done using a Hardware Description Language (HDL). The two most
well-known HDLs are Verilog and VHDL (VHSIC (Very high speed integrated circuit)
HDL). As part of our studies at HTL, we exclusively worked with VHDL. For this reason,
and because VHDL offers a better type system, it was chosen as the language of
choice for the project.

10.1 Vendor Tools

The conventional way to work with FPGA designs is to use the FPGA vendor’s devel-
opment solution for simulation, synthesis and place-and-route. All of these tools are
proprietary software specialized to a certain FPGA manufacturer, so a change of hard-
ware also requires changing to a completely different software solution.

Vendor tools are usually free-of-charge for basic usage, but this also means there is no
guaranteed support. During the development of this project, several bugs and missing
features were found in vendor tools that required workarounds.

10.2 Free Software Tools

A somewhat recent development is the creation of Free SoftwareS FPGA toolchains.
A breakthrough was achieved by Claire (formerly Clifford) Wolf in 2013 with yosys[21],
[28], a feature-complete Verilog synthesis suite for Lattice’s iCE40 FPGA series.
Since then, both yosys and place-and-route tools like nextpnr[29] have matured, how-
ever Lattice’s iCE40 and ECP5 remained the only supported FPGA architectures for
place-and-route.

Thus, two obstacles remained for Free toolchains to be viable for this project: synthe-
sizing from VHDL code and synthesizing to Artix-7 FPGAs. During the development of
the project, both of these were solved: Tristan Gingold released ghdlsynth-beta[22], a

S“Free Software” refers to software that grants its user the freedom to share, study and modify it - see
https://www.fsf.org/about/what-is-free-software.

Armin Brauns Tooling 62

https://www.fsf.org/about/what-is-free-software

bridge between GHDL[19] and yosys allowing VHDL to be synthesized just the same as
Verilog, and Dave Shah added Xilinx support to nextpnr[23]. The latter was preceded
by many months of volunteer work reverse-engineering the Xilinx bitstream format as
part of Project X-Ray[24].

With these two pieces in place, the project was switched over to a completely Free
toolchain, removing any depencies on vendor tools:

• yosys, with ghdl as a frontend for processing VHDL, is used to synthesize the
design

• nextpnr-xilinx, together with the Project X-Ray database, is used for place-and-
route

• tools from Project X-Ray are used to convert the routed design to a bitstream

• openFPGALoader is used to transfer the bitstream to the FPGA via JTAG

11 Peripherals

11.1 UART

11.2 DVI graphics

The graphics submodule consists of a VGA timing generator, a text renderer with a font
ROM, and a DVI encoder frontend:

11.2.1 VGA timing

The timing of VGA signals dates back to analog monitors. Even though this original
purpose is only very rarely used nowadays, the timing remained the same for analog
and digital DVI all the way to modern HDMI.

In analog screens, the electron beams (one for each primary color red, green and blue)
scan across the screen a single horizontal line at a time while being modulated by the
color values, resulting in a continuous mixture of all three components. When a beam
reaches the end of a scanline, it continues outside the visible area for a small distance
(the “Front Porch”), is then sent to the beginning of the next line by a pulse of the hsync

Armin Brauns Peripherals 63

Figure xxxvii: Block diagram of the video core

(Horizontal Sync) signal, and draws the next line after another short off-screen period
(the “Back Porch”).

The same applies to vertical timings: after the beam reaches the end of the last line, a
few off-screen Front Porch lines follow, then a pulse of the vsync (Vertical Sync) signal
sends the beam to the top of the screen, where the first line of the next frame is drawn
after several invisible Back Porch lines.

The VGA timing module generates these hsync and vsync signals, along with a blank-
ing signal (active during any front porch, sync and back porch) and, while in the visible
area (i.e. not blanking), the row and column of the current pixel relative to the visible
area.

11.2.2 Text renderer

The text renderer converts a logical representation of a character, such as its ASCII
code (henceforth referred to as its codepoint) to a visual representation (a glyph). This
conversion is achieved using a font, a mapping of codepoints to glyphs.

First, the current pixel coordinate (created by the VGA timing generator) is split up
into two parts: the character index, which specifies the on-screen character the pixel
belongs to, and the offset of the pixel in this character. The character index is passed
to the text RAM, which contains the codepoint for each on-screen character. This
codepoint, along with the pixel offset, is looked up in the font ROM to determine the

Armin Brauns Text renderer 64

Figure xxxviii: Diagram of VGA timing intervals

color of the pixel.

11.2.3 TMDS encoder

DVI and HDMI are serial digital transmission standards. Three data lines (correspond-
ing to red, green, and blue channels) along with a clock line transmit all color in-
formation as well as synchronization signals. The encoding used for these signals
is Transition-minimized differential signaling (TMDS). It is a kind of 8b/10b encoding
(transforming every 8-bit chunk of data into a 10-bit chunk) that is designed to mini-
mize the number of changes of the output signal.

11.3 Ethernet

The Arty development board contains an RJ-45 Ethernet jack connected to an Ethernet
PHY, which exposes a standardized media-independent interface (MII) to the FPGA.

Armin Brauns TMDS encoder 65

Figure xxxix: Block diagram of the text renderer

The LiteEth core[30], which is released under a Free Software license, is used to inte-
grate the Ethernet interface into the SoC.

11.4 WS2812 driver

A hardware driver for WS2812 serially-addressable RGB LEDs is also included in the
SoC. It was developed independently as part of the curriculum at HTL and later incor-
porated into the SoC.

Figure xl: Block diagram of the WS2812 driver

The driver is designed to be attached to external circuitry that provides color data for
any given LED index (address). This can either be discrete logic that generates the
color value from the address directly, or a memory that stores a separate color value
for each address.

The LEDs are controlled using a simple one-wire serial protocol. After a reset (long
period of logic 0), the data for all LEDs is transmitted serially in one single blob. Each
LED consumes and stores the first 24 bits of the stream and applies them as its color
value (8 bits each for red, green, blue), all following bits are passed through unmodified.
The second LED thus uses the first 24 bits of the stream it receives, but since the

Armin Brauns WS2812 driver 66

Figure xli: Timing diagram for the WS2812 serial protocol

first LED already dropped its data, these are actually the second set of 24 bits of the
source data.

Every bit is encoded as a period of logic 1, followed by a period of logic 0. The timing
of these sections determines the value, see xli.

The exact timing differs between models, so all periods can be customized using gener-
ics in the VHDL entity.

11.5 DRAM

11.6 External Bus

Bridging the internal SoC bus with the external peripheral bus requires a few steps.
For one, the external data bus is bidirectional, so tri-state outputs must be used on
the FPGA. In addition, the internal bus arbitrates components using addresses alone,
while the external bus uses chip enable signals and overlapping address spaces.

Due to a mistake in the adapter board layout, the nibbles of the address and data buses
are reversed (MSB to LSB are pins 7 to 0 on the FPGA, but 3 to 0 followed by 7 to 4
on the board). Thanks to the completely arbitrary mapping of FPGA pins, this can be
mitigated without using any additional resources.

Armin Brauns DRAM 67

12 Testing

12.1 RISC-V Compliance Tests

The RISC-V Compliance Test Suite[31] can be used to empirically confirm the correct
functionality of a RISC-V processor. It consists of a series of programs that perform
some operations related to a specific feature, then write some result data to a memory
region. This memory region is then compared to a “golden signature”, which was
produced by a processor implementation that is known to be correct.

The initial implementation of the compliance tests uncovered several bugs in the pro-
cessor core:

• The bitshift instructions (SLL, SRL, SRA, etc.) must, according to the RISC-V
standard, only use the lower 5 bits of the second operand as a shift offset. The
implementation used all 31 bits instead, causing a test failure.

• Reading a signed value of a size less than 32 bits from memory would not per-
form proper sign extension. For example, reading a byte value of 0xFF (-1)
would result in an expanded machine word of 0x0000_00FF (255) instead of
0xFFFF_FFFF.

• The SLTIU (Set less than immediate; unsigned) instruction compares a given
register with a constant provided as part of the instruction (the immediate). While
the comparison is unsigned, the 12-bit immediate must be sign-extended as if
it were a signed integer. The implementation wrongly assumed that the sign-
extension should be unsigned as well.

• The Instruction Set Manual specifies exceptions that must be raised when a mis-
aligned memory access occurs. These exceptions were not yet implemented, but
since the compliance tests check for them, the functionality was added to make
the tests pass.

Since these tests are easily automated, they were added to the GitLab Continuous
Integration (CI) configuration. Whenever a new git commit is pushed to GitLab, the
tests are run automatically, and any failures are reported to the responsible committer
via email.

Armin Brauns Testing 68

Figure xlii: Block diagram of the CPU core

Part III

The Core

The core implements the rv32i architecture as specified by the RISC-V standard.

It is constructed according to the traditional RISC pipeline:

Fetch fetches the next instruction from memory.

Decode decodes the instruction into its constituent parts. At the same time, operand
values are loaded from any required registers.

Execute performs the action required by the instruction, such as math performed by
the Arithmetic Logic Unit (ALU) or writing to Control and Status Registers (CSRs).

Memory loads values from or stores values to the system’s main memory or interacts
with memory-mapped hardware devices.

Writeback stores a potential result value from Execute or Memory stages to the des-
tination register.

13 Overview

14 Control
� �

1 entity control is
2 generic (
3 RESET_VECTOR : yarm_word
4);
5 port (
6 clk : in std_logic;
7 reset : in std_logic;
8
9 fetch_enable : out std_logic;

10 fetch_ready : in std_logic;
11 fetch_instr_out : in yarm_word;
12
13 decoder_enable : out std_logic;
14 decoder_instr_info_out : in instruction_info_t;
15

Armin Brauns 69

16 registers_data_a : in yarm_word;
17 registers_data_b : in yarm_word;
18
19 alu_enable_math : out std_logic;
20 alu_math_result : in yarm_word;
21 alu_valid : in std_logic;
22 alu_enable_cmp : out std_logic;
23 alu_cmp_result : in compare_result_t;
24
25 csr_enable : out std_logic;
26 csr_ready : in std_logic;
27 csr_data_read : in yarm_word;
28 csr_increase_instret : out std_logic;
29
30 datamem_enable : out std_logic;
31 datamem_ready : in std_logic;
32
33 alignment_raise_exc : out std_logic;
34 alignment_exc_data : out exception_data_t;
35
36 registers_read_enable : out std_logic;
37 registers_write_enable : out std_logic;
38
39 -- TRAP CONTROL
40
41 may_interrupt : out std_logic;
42 -- the stage that will receive an interrupt exception
43 interrupted_stage : out pipeline_stage_t;
44
45 do_trap : in std_logic;
46 trap_vector : in yarm_word;
47
48 trap_return_vec : in yarm_word;
49 return_trap : out std_logic;
50
51 -- instruction info records used as input for the respective stages
52 stage_inputs : out pipeline_frames_t
53);
54 end control;� �

control.vhd

The control unit is responsible for coordinating subcomponents and the data flow be-
tween them. Internally, it is based on instruction_info_t structures, which
contain all the information required to pass an instruction along the different pipeline
stages. Before the fetch stage, when an instruction is first scheduled, it contains only
the instruction’s address (because nothing else is known about it). Then, information
is added incrementally by the different stages.

15 Decoder
� �

1 entity decoder is
2 port (

Armin Brauns Decoder 70

3 clk : in std_logic;
4 enable : in std_logic;
5
6 async_addr_rs1 : out register_addr_t;
7 async_addr_rs2 : out register_addr_t;
8
9 alu_muxsel_a : out mux_selector_t;

10 alu_muxsel_b : out mux_selector_t;
11 alu_muxsel_cmp2 : out mux_selector_t;
12
13 csr_muxsel_in : out mux_selector_t;
14
15 instr_info_in : in instruction_info_t;
16 instr_info_out : out instruction_info_t;
17
18 raise_exc : out std_logic;
19 exc_data : out exception_data_t
20);
21 end decoder;� �

decoder.vhd

The decoder receives an instruction and interprets it. Among others, it determines

• The source and destination register addresses

• The pipeline stages that need to be run for the instruction

• The ALU operation, if any

• Whether the instruction should branch, and if so, under what condition

16 Registers� �
1 entity registers is
2 port (
3 clk : in std_logic;
4
5 read_enable : in std_logic;
6 write_enable : in std_logic;
7
8 addr_a : in register_addr_t;
9 addr_b : in register_addr_t;

10 addr_d : in register_addr_t;
11
12 data_a : out yarm_word;
13 data_b : out yarm_word;
14 data_d : in yarm_word
15);
16 end registers;� �

registers.vhd

Armin Brauns Registers 71

The registers store the 32 general-purpose values required by rv32i (each 32-bit wide).
They are accessible through two read ports and one write port. As specified by the
RISC-V standard, the first register (x0) is hard-wired to 0, and any writes to it are
ignored.

17 Arithmetic and Logic Unit (ALU)
� �

1 entity alu is
2 port (
3 clk : in std_logic;
4
5 enable_math : in std_logic;
6 valid : out std_logic;
7 operation : in alu_operation_t;
8 a, b : in yarm_word;
9 math_result : out yarm_word;

10
11 -- compare inputs
12 -- do signed comparisons
13 enable_cmp : in std_logic;
14 cmp_signed : in std_logic;
15 cmp1, cmp2 : in yarm_word;
16 cmp_result : out compare_result_t
17);
18 end alu;� �

alu.vhd

The ALU contains a math/logic unit as well as a comparator. It is used both explicitly
by instructions such as add or shiftl , as well as to add offsets to base addresses
for memory instructions and to decide whether an instructions should branch.

18 Control and Status Registers (CSR)
� �

1 entity csr is
2 generic (
3 HART_ID : integer
4);
5 port (
6 clk : in std_logic;
7 reset : in std_logic;
8 enable : in std_logic;
9 ready : out std_logic;

10
11 instr_info_in : in instruction_info_t;
12 data_write : in yarm_word;
13 data_read : out yarm_word;
14
15 increase_instret : in std_logic;

Armin Brauns Arithmetic and Logic Unit (ALU) 72

16
17 external_int : in std_logic;
18 timer_int : in std_logic;
19 software_int : in std_logic;
20
21 interrupts_pending : out yarm_word;
22 interrupts_enabled : out yarm_word;
23 global_int_enabled : out std_logic;
24 mtvec_out : out yarm_word;
25 mepc_out : out yarm_word;
26
27 do_trap : in std_logic;
28 return_m_trap : in std_logic;
29 mepc_in : in yarm_word;
30 mcause_in : in yarm_trap_cause;
31 mtval_in : in yarm_word;
32
33 raise_exc : out std_logic;
34 exc_data : out exception_data_t
35);
36 end csr;� �

csr.vhd

The control and status registers contain configurations relevant to the core itself. For
example, they can be used to control interrupts.

19 Memory Arbiter
� �

1 entity memory_arbiter is
2 port (
3 clk : in std_logic;
4 reset : in std_logic;
5
6 fetch_enable : in std_logic;
7 fetch_ready : out std_logic;
8 fetch_address : in yarm_word;
9 fetch_instr_out : out yarm_word;

10
11 fetch_raise_exc : out std_logic;
12 fetch_exc_data : out exception_data_t;
13
14 datamem_enable : in std_logic;
15 datamem_ready : out std_logic;
16 datamem_instr_info_in : in instruction_info_t;
17 datamem_read_data : out yarm_word;
18
19 datamem_raise_exc : out std_logic;
20 datamem_exc_data : out exception_data_t;
21
22 -- little-endian memory interface, 4 byte address alignment
23 MEM_addr : out yarm_word;
24 MEM_read : out std_logic;
25 MEM_write : out std_logic;
26 MEM_ready : in std_logic;

Armin Brauns Memory Arbiter 73

27 MEM_byte_enable : out std_logic_vector(3 downto 0);
28 MEM_data_read : in yarm_word;
29 MEM_data_write : out yarm_word
30);
31 end memory_arbiter;� �

memory_arbiter.vhd

Since both fetch and memory stages need to access the same system memory, access
to this common resource has to be controlled. The memory arbiter acts as a proxy for
both fetch and data memory requests and stalls either until the other one completes.

20 Exception Control
� �

1 entity exception_control is
2 port (
3 clk : in std_logic;
4
5 fetch_raise_exc : in std_logic;
6 fetch_exc_data : in exception_data_t;
7
8 -- synchronous exceptions
9 decoder_raise_exc : in std_logic;

10 decoder_exc_data : in exception_data_t;
11
12 csr_raise_exc : in std_logic;
13 csr_exc_data : in exception_data_t;
14
15 alignment_raise_exc : in std_logic;
16 alignment_exc_data : in exception_data_t;
17
18 datamem_raise_exc : in std_logic;
19 datamem_exc_data : in exception_data_t;
20
21 -- interrupts
22 global_int_enabled : in std_logic;
23 interrupts_enabled : in yarm_word;
24 interrupts_pending : in yarm_word;
25
26 -- stage inputs for return address + trap value (instruction)
27 stage_inputs : in pipeline_frames_t;
28 interrupted_stage : in pipeline_stage_t;
29
30 may_interrupt : in std_logic;
31 do_trap : out std_logic;
32 trap_cause : out yarm_trap_cause;
33 trap_address : out yarm_word;
34 trap_value : out yarm_word
35);
36 end exception_control;� �

exception_control.vhd

Armin Brauns Exception Control 74

Several components in the core may raise a synchronous exception when an unex-
pected error (such as a malformed instruction or an unaligned memory access) occurs.
Additionally, asynchronous interrupts (like from a timer or a UART) can be triggered
externally. When an exception or an enabled interrupt is registered, program flow is
diverted to the trap handler, defined using the machine trap vector (mtvec) CSR.

Brauns, Plank Exception Control 75

21 Erklärung der Eigenständigkeit der Arbeit

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stel-
len als solche erkenntlich gemacht habe. Meine Arbeit darf öffentlich zugänglich
gemacht werden, wenn kein Sperrvermerk vorliegt.

Ort, Datum Armin Brauns

Ort, Datum Daniel Plank

Brauns, Plank Erklärung der Eigenständigkeit der Arbeit 76

HTL Anichstraße
Biomedizin · Elektronik · Elektrotechnik · Maschinenbau ·Wirtschaftsingenieure

I List of Figures

i An overview of the hardware peripherials iv
ii Atari PBI Pinout;Source: https://www.atarimagazines.com . . . 2
iii Digilent Analog Discovery 2;Source: https://www.sparkfun.com/ 5
iv The ATMega 2560 module for the backplane 6
v Layout of the DIN41612 Connectors on the Backplane 7
vi Measurement at around 1MHz bus clock on MS1 8
vii The case with installed backplane . 9
viii PC-16550D Pinout[4] . 10
ix The schematic of the UART Module . 12
x Measurement of the 1.8432 MHz Output on J1 13
xi Measurement of a character transmission before and after MAX-232 . . 14
xii Pinout of the RJ-45 Plug; Src: https://www.wti.com/ 14
xiii Measurement of a character echo . 15
xiv Transmission of character A via the 16550 UART 18
xv The final uart module with the pc16550 uart in the center 20
xvi TLC-7528 Pinout[6] . 21
xvii IDT-7201 Pinout[7] . 22
xviii TLC-7528 in voltage modet[6] . 23
xix Measurement of a generated SAW signal via the TLC7528 23
xx The schematic of the DAC Module . 24
xxi Measurement of a generated SAW signal with the FIFO Empty flag . . . 26
xxii A transmission between the FIFO and the DAC 27
xxiii A fifo store operation in contrast to the load operation 27
xxiv Storage and retrieval of a sine to and from the FIFO 29
xxv Measuremet of the generated sine from the sine LUT on DACA and DACB 29
xxvi The final DAC module . 31
xxvii 3.3V to 5V conversion using the level shifter 32
xxviii5V to 3.3V conversion using the level shifter 33
xxix The internal schematics of the level shifter[12] 33
xxx The internal clamping diodes of the Analog Discovery 2[1] 34
xxxi A Flow-Chart of the program execution path 39
xxxii The output of an example track part 1 46
xxxiiiThe output of an example track part 2 47
xxxivA regular beginning of the game . 52
xxxv A state diagram of the computer state machine 55
xxxviScreenshot of the resulting waveform in GTKWave 59

Brauns, Plank I

https://www.atarimagazines.com
https://www.sparkfun.com/
https://www.wti.com/

xxxviiBlock diagram of the video core . 64
xxxviiiDiagram of VGA timing intervals . 65
xxxixBlock diagram of the text renderer . 66
xl Block diagram of the WS2812 driver . 66
xli Timing diagram for the WS2812 serial protocol 67
xlii Block diagram of the CPU core . 69

II List of Tables

III Listings

I Read and write routines for the 16550 UART 15
II 16550 INIT routines and single char transmission 17
III 16550 character echo . 19
IV SAW Generation for the DAC with FIFO 27
V Sine LUT Generation . 28
VI DAC Sine Generation . 28
VII The avr.h header file . 36
VIII The routine function looped by the main 37
IX The routine function for the UART . 38
X The routine function for the DAC . 38
XI The DAC operation modes . 41
XII The DAC waveform generation code . 41
XIII The ISR which fires every millisecond 44
XIV The sound update function . 44
XV The character ingest function . 48
XVI The command parsing function . 49
XVII The command execution routine . 50
XVIIIThe computer FSM . 54

Literaturverzeichnis

[1] Analog Discovery 2 Reference Manual. Digilent, Inc. Sept. 2015. url:
https : / / reference . digilentinc . com / _media / reference /

instrumentation/analog-discovery-2/ad2_rm.pdf.

Brauns, Plank List of Tables II

https://reference.digilentinc.com/_media/reference/instrumentation/analog-discovery-2/ad2_rm.pdf
https://reference.digilentinc.com/_media/reference/instrumentation/analog-discovery-2/ad2_rm.pdf

[2] Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V. Atmel Corporation. Feb.
2014. url: https://ww1.microchip.com/downloads/en/devicedoc/
atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-

2560-2561_datasheet.pdf.

[3] Interface Between Data Terminal Equipment and Data Circuit- Terminating
Equipment Employing Serial Binary Data Interchange. Standard. Oct. 1997.

[4] PC16550D Universal Asynchronous Receiver/Transmitter With FIFOs. Texas In-
struments Inc. 1995. url: https://www.scs.stanford.edu/10wi-cs140/
pintos/specs/pc16550d.pdf.

[5] MAX232x Dual EIA-232 Drivers/Receivers. Texas Instruments Inc. Feb. 1989.
url: https://www.ti.com/lit/ds/symlink/max232.pdf.

[6] DUAL 8-BIT MUTLIPLYING DIGITAL-TO-ANALOG CONVERTERS. Texas In-
struments Inc. 1987. url: https : / / www . ti . com / lit / ds / symlink /
tlc7528.pdf.

[7] Integrated Device Technology, Inc.: CMOS ASYNCHRONOUS FIFO. RENE-
SAS. 2002. url: http://www.komponenten.es.aau.dk/fileadmin/
komponenten/Data_Sheet/Memory/IDT7201.pdf.

[8] High-Speed CMOS Logic Octal D-Type Flip-Flop, 3-State Positive-Edge Trig-
gered. Texas Instruments Inc. Feb. 1998. url: https://www.ti.com/lit/
ds/schs183c/schs183c.pdf.

[9] SNx4HC00 Quadruple 2-Input Positive-NAND Gates. Texas Instruments Inc.
Dec. 1982. url: https://www.ti.com/lit/ds/symlink/sn74hc00.pdf.

[10] Compact disc digital audio system. Standard. International Electrotechnical
Commission, Sept. 1987.

[11] Ethan Winer: The Audio Expert: Everything You Need to Know About Audio.
Focal Press, 2013. url: https : / / books . google . com / books ? id =
TIfOAwAAQBAJ&pg=PA107#v=onepage&q=-%2010%20dbv&f=false.

[12] Jenny List: „Taking It To Another Level: Making 3.3V Speak With 5V“. In: (Dec.
2016). url: https://hackaday.com/2016/12/05/taking-it-to-
another-level-making-3-3v-and-5v-logic-communicate-with-

level-shifters/.

[13] Schottky Barrier Diode DB3S406F0L Silicon epitaxial planar type. Panasonic.
Mar. 2010. url: https://industrial.panasonic.com/content/data/
SC/ds/ds4/DB3S406F0L_E.pdf.

[14] Ron Schnell: Dunnet Source Code. Emacs. 1982. url: https://github.com/
jwiegley/emacs-release/blob/master/lisp/play/dunnet.el.

Brauns, Plank LITERATURVERZEICHNIS III

https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://www.scs.stanford.edu/10wi-cs140/pintos/specs/pc16550d.pdf
https://www.scs.stanford.edu/10wi-cs140/pintos/specs/pc16550d.pdf
https://www.ti.com/lit/ds/symlink/max232.pdf
https://www.ti.com/lit/ds/symlink/tlc7528.pdf
https://www.ti.com/lit/ds/symlink/tlc7528.pdf
http://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Memory/IDT7201.pdf
http://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Memory/IDT7201.pdf
https://www.ti.com/lit/ds/schs183c/schs183c.pdf
https://www.ti.com/lit/ds/schs183c/schs183c.pdf
https://www.ti.com/lit/ds/symlink/sn74hc00.pdf
https://books.google.com/books?id=TIfOAwAAQBAJ&pg=PA107#v=onepage&q=-%2010%20dbv&f=false
https://books.google.com/books?id=TIfOAwAAQBAJ&pg=PA107#v=onepage&q=-%2010%20dbv&f=false
https://hackaday.com/2016/12/05/taking-it-to-another-level-making-3-3v-and-5v-logic-communicate-with-level-shifters/
https://hackaday.com/2016/12/05/taking-it-to-another-level-making-3-3v-and-5v-logic-communicate-with-level-shifters/
https://hackaday.com/2016/12/05/taking-it-to-another-level-making-3-3v-and-5v-logic-communicate-with-level-shifters/
https://industrial.panasonic.com/content/data/SC/ds/ds4/DB3S406F0L_E.pdf
https://industrial.panasonic.com/content/data/SC/ds/ds4/DB3S406F0L_E.pdf
https://github.com/jwiegley/emacs-release/blob/master/lisp/play/dunnet.el
https://github.com/jwiegley/emacs-release/blob/master/lisp/play/dunnet.el

[15] ASCII Format for Network Interchange. Standard. Network Working Group, Oct.
1969. url: https://tools.ietf.org/pdf/rfc20.pdf.

[16] VT100 SERIES TECHNICAL MANUAL. Digital Equipment Corporation. 1979.
url: https://vt100.net/docs/vt100-tm/ek-vt100-tm-002.pdf.

[17] Tool Interface Standard (TIS)Executable and Linking Format (ELF) Specification.
Standard. TIS Committee, May 1995. url: https://refspecs.linuxbase.
org/elf/elf.pdf.

[18] Unknown Author: Data in Program Space. avr-libc 2.0.0 Standard C library for
AVR-GCC. 2016. url: https : / / www . nongnu . org / avr - libc / user -
manual/pgmspace.html.

[19] Tristan Gingold: ghdl. url: https://github.com/ghdl/ghdl.

[20] Tony Bybell: GTKWave. url: http://gtkwave.sourceforge.net.

[21] Various Contributors: Yosys - Yosys Open SYnthesis Suite. url: https : / /
github.com/YosysHQ/yosys.

[22] Tristan Gingold: ghdlsynth-beta. url: https://github.com/tgingold/
ghdlsynth-beta.

[23] David Shah: nextpnr-xilinx. url: https : / / github . com / daveshah1 /

nextpnr-xilinx.

[24] SymbiFlow: Project X-Ray. url: https : / / github . com / SymbiFlow /

prjxray.

[25] Gwenhael Goavec-Merou: openFPGALoader. url: https://github.com/
trabucayre/openFPGALoader.

[26] Olav Junker Kjær: The Nand Game. url: http://nandgame.com.

[27] Ben Eater: Building an 8-bit breadboard computer! 2016. url:
https : / / www . youtube . com / playlist ? list =

PLowKtXNTBypGqImE405J2565dvjafglHU.

[28] Johann Glaser Clifford Wolf: „Yosys - A Free Verilog Synthesis Suite“. 2013. url:
http://www.clifford.at/yosys/files/yosys-austrochip2013.

pdf.

[29] Various Contributors: nextpnr - a portable FPGA place and route tool. url:
https://github.com/YosysHQ/nextpnr.

[30] Florent Kermarrec: LiteEth. url: https://github.com/enjoy-digital/
liteeth.

[31] Lee Moore Jeremy Bennett: RISC-V Compliance Task Group. url: https://
github.com/riscv/riscv-compliance.

Brauns, Plank LITERATURVERZEICHNIS IV

https://tools.ietf.org/pdf/rfc20.pdf
https://vt100.net/docs/vt100-tm/ek-vt100-tm-002.pdf
https://refspecs.linuxbase.org/elf/elf.pdf
https://refspecs.linuxbase.org/elf/elf.pdf
https://www.nongnu.org/avr-libc/user-manual/pgmspace.html
https://www.nongnu.org/avr-libc/user-manual/pgmspace.html
https://github.com/ghdl/ghdl
http://gtkwave.sourceforge.net
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys
https://github.com/tgingold/ghdlsynth-beta
https://github.com/tgingold/ghdlsynth-beta
https://github.com/daveshah1/nextpnr-xilinx
https://github.com/daveshah1/nextpnr-xilinx
https://github.com/SymbiFlow/prjxray
https://github.com/SymbiFlow/prjxray
https://github.com/trabucayre/openFPGALoader
https://github.com/trabucayre/openFPGALoader
http://nandgame.com
https://www.youtube.com/playlist?list=PLowKtXNTBypGqImE405J2565dvjafglHU
https://www.youtube.com/playlist?list=PLowKtXNTBypGqImE405J2565dvjafglHU
http://www.clifford.at/yosys/files/yosys-austrochip2013.pdf
http://www.clifford.at/yosys/files/yosys-austrochip2013.pdf
https://github.com/YosysHQ/nextpnr
https://github.com/enjoy-digital/liteeth
https://github.com/enjoy-digital/liteeth
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance

Anhang

Brauns, Plank Anhang V

	Gendererklärung
	Kurzfassung/Abstract
	Result
	Task description
	Hardware

	Hardware peripherials
	Parallel bus
	Address Bus

	Data Bus
	Control Bus
	Master Reset
	Write Not
	Read Not
	Module Select 1 and 2 Not

	Testing and Measurement
	Measurements
	Testing

	Backplane
	Termination resistors

	Case
	Serial Console
	16550 UART
	MAX-232
	Schematics
	Demonstration Software
	Final Module

	Audio Digital-Analog-Converter
	TLC 7528 Dual R2R Ladder DAC
	IDT7201 CMOS FIFO Buffer
	Theory verfication
	Schematics
	Demonstration Software

	Addressing DACA and DACB
	Final Module
	FPGA to Hardware interface
	Measurement error

	Textadventure
	General Implementation details
	General definitions and pinout of the AVR
	Read and Write routines
	UART and DAC update polling
	Program execution path

	DAC sound generation
	DAC modes
	Tones and Tracks
	Track switching

	User command interpretation
	Command structure and parsing
	Command parameters

	Gameplay
	Memory constraints
	Story
	Recursion
	Computer State Machine

	I A short introduction to VHDL
	Prerequisites
	Creating a design
	Simulating a design
	Synthesizing a design

	II Meta
	History
	Tooling
	Vendor Tools
	Free Software Tools

	Peripherals
	UART
	DVI graphics
	VGA timing
	Text renderer
	TMDS encoder

	Ethernet
	WS2812 driver
	DRAM
	External Bus

	Testing
	RISC-V Compliance Tests

	III The Core
	Overview
	Control
	Decoder
	Registers
	Arithmetic and Logic Unit (ALU)
	Control and Status Registers (CSR)
	Memory Arbiter
	Exception Control
	Erklärung der Eigenständigkeit der Arbeit
	List of Figures
	List of Tables
	Listings
	Anhang

