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Gendererklarung

Aus Grunden der besseren Lesbarkeit wird in dieser Diplomarbeit die Sprachform des
generischen Maskulinums angewendet. Es wird an dieser Stelle darauf hingewiesen,
dass die ausschlieB3liche Verwendung der mannlichen Form geschlechtsunabhangig
verstanden werden soll.



Kurzfassung/Abstract

Diese Diplomarbeit beschaftigt sich mit der Arbeitsweise von Prozessoren und
Prozessorperipherie in moderner und traditioneller Form. Sie versucht den Aufbau
eines Computersystems in Hard- und Software zu veranschaulichen sowie diesen
zu erklaren. Dafiar wurde auf einem Xilinx-FPGA ein RISC-V32| Prozessor in VHDL
implementiert, sowie diverse Parallelbus-gebundene Hardwareperipherie entwickelt
und gebaut. Als Harwareperipherie wurde ein 8-Bit 2-Kanal DAC und eine serielle
Schnittstelle mit TIA-/EIA-232 Pegeln gewahlt. Der Prozessor implementiert das
RISC-V32l base instruction set. Aufgrund der starken Verwendung von Englisch
im Software- und Hardwarebereich wurde diese Diplomarbeit in Englisch verfasst,
wodurch ebenfalls die Lesbarkeit erh6ht wird. Die entstandene Dokumentation soll far
Menschen mit einem grundlegenden Verstéandnis far Elekironik sowie der Hardware-
Beschreibungssprache VHDL verstandlich sein.

This diploma thesis demonstrates the operation of processors and their corre-
sponding peripherals, both in modern and traditional forms. It attempts to illustrate
the structure of a computer system in hard- and software. To reach this goal, a
RISC-V processor was implemented in VHDL on a Xilinx FPGA and some parallel
bus peripherals were designed using discrete hardware. These peripherals include
a 2-channel 8-bit digital-to-analog converter as well as a TIA-/EIA-232 compliant
serial interface. Due to the common use of english in the hardware and software
engineering field, and in a resulting effort to increase readability, this thesis is written in
English. The written documentation should be comprehensible for anyone with a basic
understanding of electronics as well as the hardware description language VHDL.



Result

The project has been fully implemented with all functionality originally targeted. The
system has been tested and verified. All example code has been documented and
tested. Hardware implementations were created using Free software® programs,
while the RISC-V processor can be compiled with a Free toolchain. The completed
project can be found on the USB stick which accompanies this thesis, or in the
git repositories at https://git.it-syndikat.org/tyrolyean/dipl.git and
https://gitlab.com/YARM-project/. The completed hardware peripherals can
be seen in Figure1].

'See ENbsection 111
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Figure 1: An overview of the hardware peripherals
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1 INTRODUCTION

In early 2018, more than a year before the official start of the project, after searching
for a subject for the diploma thesis, the idea of building a computer from scratch had
come up. Multiple suggestions on how to implement it were gathered. Originally, the
goal was to design a computer consisting of seperate plug-in cards, one instruction
residing on each. This would open up the “black box“ of modern processor design,
showing the basic components at a macroscopic scale.

The project’s aim was later redirected due to concerns about difficulty, and an FPGA-
based design was opted for instead. After several months of implementation time, the
project was split into two parts: the peripherals and the processor core. During the
development process, and to get back to the original goal of making a processor more
understandable, the peripherals changed from being implemented in VHDL back to
hardware. This increased the required effort, but would result in a far more under-
standable final product.

The decision to use a RISC-V based processor was made at the beginning of the
project because the core architecture is well documented and modular, and because
almost any feature not implemented inside the processor can be emulated using soft-
ware instead.

1.1 Free software

For most of today’s processors, documentation only exists on the execution of pro-
grams (the runtime environment), not for their internals. In order to have the biggest
possible educational potential, this project is entirely "Free as in speech": All involved
software and hardware designs, as well as all the tools and utilities required to create
them, comply with the Free Software Foundation’s definition for Free software [1]. They
give the users the rights to share, study and modify them at their will. In this thesis,
the capital-F “Free” is used to refer to this definition rather than the meaning of “free of
charge” or “gratis”.

Daniel Plank Introduction 1



2 TASK DESCRIPTION

2.1 Hardware

Due to the recurring questions in the environment of the Hackerspace Innsbruck about
the internal workings of a computer system and the lack of material to demonstrate
these, hardware should be developed for educational purposes. This hardware should
not be too complex to understand but still demonstrate basic tasks of a computer sys-
tem. The targeted computing tasks are human interface device controllers, for which
schematics and a working implementation in the hardware building style of the Hack-
erspace should be built. All nescessary hardware will be provided by the Hackerspace.
If possible, already present hardware should be used, or, if impossible, new one will be
ordered. All schematics should, where possible, be constructed in Free software such
as Kicad or GNU-EDA.

If possible, software-examples should be written as well, though the complexity of these
is coupled to the time left to spend on the project. Software should be written in C, the
coding convention is left to the implementer.

3 ORGANIZATION

3.1 Hardware peripherals

Planning of the peripherals was done based on the information provided on large parts
by David Oberhollenzer. A lot of his advice contributed heavily to the direction the
development went.

3.1.1 Peripheral selection

The selection of the hardware peripherals was done based on implementation difficulty,
common use in computer systems, relevance in current times and whether they were
fitting for demonstrative purposes.

Serial Communication interface Serial communication interfaces have been
around for a long time. They have been used for many different applications from

Daniel Plank Task description 2



early mouse pointer devices [?] to user input terminals[3] which are far away from the
real computer system. They are still very common in smaller embedded systems and
in the server space, where they are used as a simple and less error prone way to in-
terface with the operating system and programs running there. They are fairly easy to
implement as there are interface ICs which provide a more generic interface for serial
communications [4]. Most SOCs 2 have some form of serial communication interface.
The most common serial interface voltages are 3.3V, 5V and levels as per TIA-/EIA-232
specification[5].

Parallel Port interface Parallel ports are absent on most modern computer systems
but historically have been the high speed interfaces on computers. Early computer
systems used parallel-ports for expansions and the ISA-Bus ¥ was for some time the
main way of expansion for PCs #. Most younger people remember parallel ports as
the port for printers on their home PCs. A parallel port is easy to implement because
it has simmilar use of control, data and address lines as a processor uses internally
anyway[6]. Usage of the standard IEEE 1284 port limits the design to the signals on
this port or makes the use of the signals on this port obligatory.

Digital to Analog Converter Digital to Analog Converters (or more commonly DACs)
are used on all modern PCs for sound output. They have been around for longer and
some external sound card interfaces have been standardised like AC '97[Z]. Imple-
mentation of a standard audio interface requires higher speed connections or more
precise timing for ac97 for example. Earlier computer systems did not have a sound
card as it doesn’t have important usage for computing and user input tasks and later
on computer systems only had a PC speaker for diagnostics such as the IBM PC AT
[8] which can only procude one specific frequency and does not have a DAC. A DAC is
not easy to implement as it requires a constant sampling rate and a buffer to be of any
practical use.

Graphical output / GPU Graphical output on older computer systems such as the
EDVAC [9] was not possible because it requires either a heavy load on the processor
or dedicated hardware and due to the mostly scientific use it was easier to just print
the caracters as letters via a printer. Drawing characters onto a screen is by itself not
an easy task as it requires, for example for VGA, a Digital to Analog Converter with
25MHz sampling rate and a buffer to contain all needed data for one frame or at least

280C... System on a Chip
3ISA...Industry Standard Architecture
4PC in this thesis referrs to Computer Systems using the x86 Architecture
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parts of it, while the CPU renders the frame[10]. Screen output is one of the, if not the
most, common form of output on a computer today.

Inter Integrated Circuit Inter Integrated Circuit or 1IC for short is a standard for serial
transmission between Integrated circuits[1]. This is done on a master-slave basis and
transmission speed is fairly low in standard 100kBit/s mode. The bus is used on many
different platforms for many different things including HDMI DDC [12]. Though there
are some |IC ICs which can interface with a parallel bus such as the PCA9564 [13] but
these are either limited in capability or not easy to use and implement. Most people
don’t have an understanding of IIC as it is only known in technical fields.

Utility analysis Among the above mentioned processor peripherals from the criteria
mentioned before a utility analysis was performed. To do this, different points have
been credited for the criteria mentioned which can be seen in Table @l. The multipliers
in Table @ have been applied to the points and the sums in Table B resulted. Based on
this result the DAC and Serial Communication interface were chosen as peripherals.

Criteria serial port | parallel port | DAC | GPU | IIC
implementation 0 0 1 4 2
common use 2 1 3 3 1
relevance 2 1 3 3 1
demonstrative 2 1 3 2 1

Table 1: utility analysis base points for peripherals

| Criteria | multiplier |
implementation -2
common use 1
relevance 2
demonstrative 3

Table 2: utility analysis multipliers for peripherals
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Criteria serial port | parallel port | DAC | GPU | IIC
implementation 0 0 -2 -8 -4
common use 2 1 3 3 1
relevance 4 2 6 6 2
demonstrative 6 3 9 6 3
SUM 12 6 16 7 2
Table 3: utility analysis results for peripherals
Daniel Plank Peripheral selection




4 HARDWARE PERIPHERALS

4.1 Parallel bus

The core part of the hardware is the interface between the microprocessor and the
hardware peripherals. This bus is delivering data in parallel and is therefore named the
“parallel bus®. This bus has 3 different sub-parts:

1. The address bus
2. The data bus

3. The control bus

This split is common in many computer architectures and bus systems used by various
microprocessor manufacturers. In figure P the layout of the Atari Parallel Bus Interface
is shown as used on the Atari 800XL.

me1 _ PC Connector P;n 49

. Pinsﬂ
PtnE
HE TN NN R I NN RN E
A5 &7 B Y1 100E b 1S Ap TR T 0T TR RI e Be0T 0% 20 1A o S0 3 R P47 40 45 05 FPI0AT 46 ¢ B 10 4% 1408 03R40
I Ty Ty Illll'lll'll'lliI!llllli'll!'l'!!ll'l'l_!'l:til!]Il-
g P W o-c oMo RO % = PBha ool
t«q((ﬂ(? —————— Sngmaagq = cogooon
_ 3%2%% s g0 BEEES 532333583
ADDRELS LINES DAL LINES o 5% ¥ oz
(ADATS) HOLT
Figure 4,

Paraliel Bus Pinout

Figure 2: Atari PBI Pinout;Source: https://www.atarimagazines. com

System Bus In some architectures the backbone parallel bus consisting of data-
address- and control bus is called the system bus. The system bus even has its own
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wikipedia article 8 and the picture seen in figure 3, which has been taken from this
wikipedia article, even shows the exact same parts. However the origin of this term
could not be determined and its use was the most common when describing the in-
terface between the fabric of the CPU with external parts via this interface on a moth-
erboard, which ran on system clock speed and was synchronized with the processor.
The term parallel bus was chosen for this thesis because the bus runs on an indepen-
dant clock speed and only interacts with the processor asynchronous to its clock. The
term front side bus would be more fitting but not used because of its affiliation with intel
products.

Control bus

Address bus

System bus

Figure 3: System bus structural diagram; Source: https://en.wikipedia.org/

4.1.1 Address Bus

The address bus contains the nescessary data lines for addressing the individual reg-
isters of the Serial connection and the UART. On any modern system this bus is from
16 to 64 bits wide. For our implementation the bus size was chosen to be 8 bit, which
is multiple times the amount of needed address space, but is the smallest addressable
unit on most microcontroller architectures and therefore easy to program with. The
address bus is unidirectional.

Shttps://en.wikipedia. org/wiki/System_bus
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4.1.2 Data Bus

The data bus contains the actual data to be stored to and read from registers. The data
bus is as well on most systems a multiple of 16 bits wide, but for the same reasons as
the data bus is shrunk down in our case to 8 bits. The data bus is bidirectional.

4.1.3 Control Bus

Control bus is a term which referes to any control lines (such as read and write lines
or clock lines) which are neither address nor data bus. The control bus in our case is 5
bits wide and consists of:

| Signal | Description |
MR Master Reset
-WR Write Not
-RD Read Not

-MS1 | Module Select 1 Not
-MS2 | Module Select2 Not

Table 4: Signals on the control bus

Master Reset A high level on the MR lane signals to the peripherals, that a reset of
all registers and states should occure. This is needed for the serial console and the
DAC.

Write Not A low level on the —=WR lane signals the corresponding modules, that the
data on the data bus should be written to the register on the address specified from the
address bus.

Read Not A low level on the —=RD lane signals the corresponding modules, that the
data from the register specified by the address on the address bus should be written to
the data bus.

Module Select 1 and 2 Not A low level on one of these lines signals the correspond-
ing module, that the data on address data and the control lines is meant for it.

Daniel Plank Data Bus 8



Sepearation of -RD/-=WR and-MS1/-MS2 The Read Not and Write Not lines could
be combined into one line =RD/WR. The same can be done for the Module Select
lanes. In both cases this would have made wiring inside the finished modules more
difficult and if both were combined the bus would not be able to not perform an action
at any given point in time. Therefore these signals have not been combined.

4.2 Von Neumann Archtiecture

The term “von Neumann architecture” refers to a type of computer architecture which
referres to almost any modern computer system. It describes the in this thesis used
Human input and output parts and the general workings of modern processors with the
ALUE or the CA ? as well as means to interface with its operator[9].

In his thesis “First Draft of a Report on the EDVAC* he writes about human input:

“Once these instructions are given to the device, it must be able to carry them out
completely and without any need for further intelligent human intervention. At the end
of the required operations the device must record the results again in one of the forms
referred to above.“[9, p.7]

This can be applied to the hardware implemented in this thesis, as well as other gen-
eral computing systems. The EDVAC, which his thesis referres to, was a computer
developed for military purposes. Much like the EDVAC, the CPU in this thesis is re-
sponsible for arithemtic operations and code interpetation. The peripherals are what
is referred to as the input and output devices in his report. Though the for examples
used ATMega2650 utilizes a harvard architecture “In order to maximize performance
and parallellism“[14, p.11] the more general descriptions of computational operations
still apply to this thesis. The differences between a harvard architecture and a von
neumann architecture are shown in figure @

8ALU...arithmetic logic unit
7CA...Central Arithmetic Part
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ALU Central Processing Unit

' Control Unit

Arithmetic/Logic Unit N g:\t/?::

h 4

Instruction Control Data Input
memory unit memory Device

'S
v

Memory Unit
110

Figure 4: Harvard(left) vs Von-Neumann architecture(right);
Source: https://en.wikipedia.orqg/

4.3 Testing and Measurement

For functional testing and verification of implementation goals measurements needed
to be performed in various different ways, and testing software was required.

4.3.1 Measurements

Measurements were performed, if not noted otherwise, with the Analog Discovery 2
from Digilent as it has 16bit digital I/O Pins as well a a Waveform generator and 2
differential oszilloscope inputs[15]. These were enough for all nescessary measure-
ments. Though due to the size and construction of the device, which can be seen
in figure B, errors were encountered while performing the measurements. These are
noted on occurance.

Daniel Plank Testing and Measurement 10
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Figure 5: Digilent Analog Discovery 2;Source: https://www.sparkfun.com/

4.3.2 Testing

All testing was performed with an Atmel ATMega2560 due to it’s large amount of 1/0O
pins, 5V I/0O, which is the more common voltage level on CMOS peripherals, way of
addressing pins (8 at a time) and availability. [14] All testing software was written for
this ATMega and compiled using the avr-gcc from the GNU-Project.

To fully test the developed modules on the backplane a seprate module for the ATMega
was developed, which can be seen in figure B. The ATMega is beneath the the black
PCB B in the center, which is an Arduino™Mega. The Arduino™is, for all indends and
purposes, only a breakout of the ATMega 2560 and has only been used in that way.
No parts of the Arduino™IDE or other parts of the Arduino™software suite have been
used, as they consume too much memory and the abstraction models used are not
compatiable with building processor peripherals.

8Printed circuit board
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Figure 6: The ATMega 2560 module for the backplane
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4.4 Backplane

To connect the modules to the microprocessor, many pins need to be connected
straight through. For this purpose a backplane with DIN41612 connectors is beein-
gused . These connectors are used for their large pin count (96 pins) and their avail-
ability. The backplane connects all 96-pins straight through. With the 6 outer left and
right pins connected for VCC and ground as can be seen in Figure [.

X1
YARM—BUS-SLAVE

NNNNN

N\

N
i3
o

B DATABUS ICONTROLBUS IADDRESSBUS B

All Pins connected straight through
YARM —Project Backplane BUS Layout
YARM-Project

Sheet: /

File: conn.sch

Title: YARM—-DIN41612

Size: User [ Date: 2020-03-18 [ Rev: 1
¢ KiCad E.D.A. kicad 5.1.5 [T 1/1 <
1 [ 2 T 3

Figure 7: Layout of the DIN41612 Connectors on the Backplane

4.4.1 Termination resistors

In constrast to other systems using this backplane no termination resistors were used.
This makes the bus more prone to refelctions, however these were not a problem during
development with the maximum transmission rate of 1MHz, as can be seen in the
sample recording in Figure 8
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Voltage on MS1
N

A N A Y I

-1 -08-06-04-02 0 02 04 06 O. 1 12 14 16 1.
Time .10~

SN

Figure 8: Measurement at around 1MHz bus clock on MS1

The ripple seen in Figure B is most likely due to the sample rate of the Oszilloscope,
which is around 10Mhz after an average filter has been applied. The measurement
was performed on the finished project with all cards installed.

4.5 Case

The case for the backplane was provided by the hackerspace and is meant for instal-
lation in a rack. The case is meant for installation of cards in the EUROCARD format,
therefore all modules were built by this formfactor.
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Figure 9: The case with installed backplane
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4.6 Serial Console

One core part of any computer systems is it's way to get human input. On older sys-
tems, and even today on server machines, this is done via a serial console. On this
serial console characters are transmitted in serial, which means bit by bit over the
same line. The voltage levels used in these systems vary from 5V to 3.3V or +-10V.
The most common standard for these voltage levels is the former RS-2329, or as it
should be called now, TIA-T/EIA-M232.[5] Voltage-levels, as per TIA-/EIA-232 stan-
dard, are not practical to handle over short distances however, so other voltages are
used on most interface chips and need to be converted.

4.6.1 16550 UART

The 16550 UART™ is a very common interface chip for serial communications. It pro-
duces 5V logic levels as output on TX and needs the same as input on RX. Though
common for a UART, these voltage levels need to be converted to TIA-/EIA-232 levels
for a more common interface.

The 16550 UART is in it's core a 16450 UART, but has been given a FIFO ™ puffer. It
needs three address lines, and 8 data lines, which can be seen in Figure A0

NFJ Package
44-Pin PDIP
Top View

/
Do~
Dy
D,

40fvpp
L3 o]
38— DCD
37-DSR
36—CTS
35 —MR
34—ouTi
;1 33 |- DR
RCLK—{ 9 32|—RTS
SIN—{ 10 31|—-our2
SouT—{ 11 30 |=INTR
cso—12 29 |— RXRDY
cs1—{13 2814,
csz—14 27 A
BAUDOUT —{ 15 26[—A,
XIN—{16 25 |~ ADS
xout—{17 24 |- TXRDY
WR—{18 23 [—DDIS
WwR—{19 22|—RD
Vss—{20 21[~RD

D3 —
Dy
D5 =
Dg -

BN O W B NN —

Figure 10: PC-16550D Pinout[4]

9RS... Recommended Standard

19TIA... Telecommunications Industry Association
"EIA.. Electronic Industries Alliance

12Uinversal Asynchronous Receiver and Transmitter
13First-In First-Out
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In Figure @0 the most important lanes are the SIN and SOUT lanes, as they contain
the serial data to and from the 16550 UART.

4.6.2 MAX-232

To convert the voltage levels of the 16550 UART to levels compliant with TIA-/EIA-232
levels the MAX-232 is used. It has two transmitters and two receivers and generates
the needed voltage levels via an internal voltage pump[i&].

4.6.3 Schematics

Based on the descriptions in the datasheets, the schematic in figure A1 was developed.
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Element Description The quartz oszillator Y1 is the clock source for the Baud Rate
generation and was chosen with 1.8432 MHz for availability reasons and because it is
the lowest ozillator from which all common baud rates can still be derived [4]. Resis-
tors R1 and R2 are for stability and functionality of the Oszillator nescessary as per
datasheet. The resulting frequency can be measured via J1 as can be seen in Figure
2. C1 is used to stabilize the voltage for the 16550 UART and is common practice.
Via JP1 the UART can be transformed into a USRT, where the receiver is synchronized
to the transmitter via a clock line. This mode has, however, not been tested, and the
clock needs to be 16 times the receiver clock rate[d]. The final output of the 16550
UART can be used and measured via J2, as shown in Figure I3 . Before the UART on
J2 can be used however, the Jumpers JP2 and JP3 need to be removed, as otherwise
the MAX-232 will short out with the incoming signal. Capacitors C4, C6, C7 and C8 are
for the voltage pump as defined in the datasheet[16]. R4 and R5 have been suggested
by the supervisor in order to avoid damage to the MAX-232. The RJ-45 plug is used
to transmit the TIA-/EIA-232 signal, rather than the more common D-SUB connector,
because the RJ-45 connector fits on a 2.54mm grid. The Pinout of the RJ-45 plug can
be seen in Figure T4. C5 has the same functionality for the MAX-232 as the C1 has to
the 16550-UART.

6

T T T 1T T T 1T 1T T T 1 T T T T T 1T T T T T 1T 1T T 1T T T T 1T T T T T T 1T T T T T T T T T T T T T T T T T T T T T T T %77

5

Quartz Voltage

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEBEEEREEREI!

0 0.5 1 1.5 2 25 3 3.5 4 4.5
Time 107

Figure 12: Measurement of the 1.8432 MHz Output on J1
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Figure 13: Measurement of a character transmission before and after MAX-232

Pin No.

RJ4S Format RTS 1 ac_’_\"_'l i Request to Send
Console Ports DTR 2 9"'\':} { Ready Out

TXD 3 o-':_’\'} {, Data Out

GND 4 — Ground
ping)  LPin1 5 -

RXD 6 >0 { Dataln

DCD 7 >0 §, Carrier Detect

CTS 8 >0 i, Clear to Send

Figure 14: Pinout of the RJ-45 Plug; Src: https://www.wti.com/
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4.6.4 Demonstration Software

To demonstrate the functionality and prove that the schematic has no underlying error,
a program which regularly transmits a character as well as a simple echo program,
which transmits all received characters are used. Both programs transmit 8 bit charac-
ters without parity at 38400 Baud. The output for program one can be seen in Figure
3 and the output for program two in Figure 5.

Lane Voltage

L O O .

eRX| |

e ey

wwwwwww%i B - /vayyytyﬂjjfjjjji

e}
T T T T 1T 1T 1T T 1T 1T T 1T T 1T T T T 1 T T T 1T T 1T T T T T T T T T T T T 1 T T T T T 1T 7T T 711
|

-3 -2 -1 0 1 2 3 4 5 6 7 8 9
Time 107

Figure 15: Measurement of a character echo

Transmit code The transmit code regularly transmits the letter capital A via the
16550 UART. Some initialisation is required beforehand. The functions shown in List-
ing @ are the read and write routines for accessing the 16550 UART. These routines
also apply to the echo code.

-
#define F_CPU 16000000UL

#include <stdint.h>
#include <util/delay.h>

#define BUS_HOLD_US 1
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#define WR_SHIFT 1
#define RD_SHIFT 2
#define MR_SHIFT 0
#define CS_SHIFT 3
#define CS_ADC_SHIFT 4

#define UART_REG_DLLS 0O
#define UART_REG_DLMS 1
#define UART_REG_TXRX 0O
#define UART_REG_IER 1
#define UART_REG_IIR 2
#define UART_REG_LCR 3
#define UART_REG_MCR 4
#define UART_REG_LSR 5
#define UART_REG_MSR 6
#define UART_REG_SCR 7

void set_addr(uint8_t addr){
PORTK = addr;
return;

void write_to_16550(uint8_t addr, uint8_t data){

set_addr(addr);

DDRF = OxFF;
PORTL &= ~(1<<WR_SHIFT);
PORTF = data;

PORTL &= ~(1<<CS_SHIFT);
_delay_us (BUS_HOLD_US) ;

PORTL |= 1<<CS_SHIFT;
set_addr(0x00);

PORTL |= 1<<WR_SHIFT;
PORTF = 0x00;

return;

uint8_t read_from_16550(uint8_t addr){
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uint8_t data = 0x00;
set_addr(addr);

DDRF = 0x00;

PORTF = 0x00;

PORTL &= ~(1<<RD_SHIFT);
PORTL &= ~(1<<CS_SHIFT);
_delay_us (BUS_HOLD_US);
data = PINF;

PORTL |= 1<<CS_SHIFT;
set_addr(0x00);

PORTL |= 1<<RD_SHIFT;
DDRF = OxFF;

PORTF = 0x00;

_delay_us (BUS_HOLD_US);

return data;

Listing 1: Read and write routines for the 16550 UART

To write to the 16550 UART, you need to perform some setup tasks. After startup, it
requires a MR for at least 5{s[4]. The baud rate divisor latch needs to be set to the
specified divisor for the desired baud rate, and the character width and parity control
needs to be set. The MR signal is beeing generated by the AVR on bootup. To access
the divisor latch, the divisor latch access bit needs to be set and after setting up the
baud rate divisor latch, it nees to be cleared to allow a regular transmission. This
process can be seen in Listing &

1@

int main(){

cli();

DDRF = OxFF;

DDRK = OxFF;

DDRL = OxFF;

PORTF = 0x00;

PORTK = 0x00;

PORTL = 0x00;

PORTL |= (1<<WR_SHIFT);

|= (
PORTL |= (1<<RD_SHIFT);
PORTL |= (1<<CS_SHIFT);
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PORTL |= (1<<MR_SHIFT);

_delay_us(100);

PORTL &= ~(1<<MR_SHIFT);

_delay_us(1000);

(S

sei();

for(;;){

write_to_
write_to_
write_to_
write_to_
write_to_

16550 (UART_REG_LCR, 0x83)
16550 (UART_REG_DLLS, 0x03
16550 (UART_REG_DLMS, 0x00
( )
( )

);
);

’

16550 (UART_REG_LCR, 0x03
16550 (UART_REG_TXRX, "A’

’

_delay_us(10000);

}

return 0;

Listing 2: 16550 INIT routines and single char transmission

The output of this code on the address, data and control bus as well as on the SOUT

lane of the 16550 UART can be seen in Figure A6

-

Name

- bATA
Clock
711s8]
6

5
4
3

1
0[MsB]
- laddr
2[msB]
1
0[Ls8]
IWR
IRD
MR
ics
- sout

Data
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f
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at 8.3333 MHz | 2020-02-11 18:53:52.627
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Figure 16: Transmission of character A via the 16550 UART

Echo code The echo code permanently polls the 16550 UART wether a character
has been received, and if yes, reads it from the receiver holding register and writes
it back to the tx holding register. The output of this code can be seen in Figure 5.
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The initialisation is practically the same for the echo code as well as the read and write

routines in Listing .

r

int main(){

cli();

DDRF = OxFF;

DDRK = OxFF;

DDRL = OxFF;

PORTL |= (1<<WR_SHIFT);
PORTL |= (1<<RD_SHIFT);
PORTL |= (1<<CS_SHIFT);
PORTL |= (1<<CS_ADC_SHIFT);
PORTL |= (1<<MR_SHIFT);
_delay_us(100);

PORTL &= ~(1<<MR_SHIFT);
_delay_us(1000);

write_to_16550 (UART_REG_LCR,0x83);
write_to_16550 (UART_REG_DLLS,0x03);
write_to_16550 (UART_REG_DLMS, 0x00);
write_to_16550 (UART_REG_LCR,0x03);
for(;;){
if(read_from_16550 (UART_REG_LSR) & 0x01){
write_to_16550(UART_REG_TXRX,
read_from_16550 (UART_REG_TXRX) ) ;

return 0;

Listing 3: 16550 character echo

4.6.5 Final Module

The final module can be seen in Figure 4 with the pc16550 UART in the center and
the MAX-232 above.
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Figure 17: The final uart module with the pc16550 uart in the center
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4.7 Audio Digital-Analog-Converter

A digital to analog converter takes a digital number and converts it to a analog signal.
The output of such a conversion is called a sample. With enough samples per second
various different waveforms can be produced, which, when amplified and put onto a
speaker, can be heared by the human ear as a tone. With various tones in series a
melody can be produced, which is what the DAC in this implementation does.

4.7.1 TLC 7528 Dual R2R Ladder DAC

The TLC 7528 is a Dual output parallel input R2R Ladder DAC with a maximum sample
rate of 10MHz [17], and which (should be ™) is monotonic over the entire D/A Conver-
sion Range. The TLC-7528 is the only component chosen, where availability is not a
factor, but rather it's design. It is the cheapest dual R2R Ladder DAC which takes PAR-
ALLEL input, which is an important feature, because the backbone of the project is its
parallel bus. Further the DAC was developed for audio aplications[17], which made its
use obvious. The TLC-7528 was the only IC available as DIP ™, of which the pinout
can be seen in Figure 8.

DW, N OR PW PACKAGE

(TOP VIEW)
AGND [] 1 - ooll OUTB
OUTA[] 2 19|] RFBB
RFBA[] 3 18|] REFB
REFA] 4 17[] Vbp
DGND ] 5 16]] WR

DACA/DACB[|6 15[ CS

(MSB) DB7[] 7 14[] DBO (LSB)
DB6 | 8 13[] DB
DB5[] 9 12[] DB2
DB4[] 10  11]] DB3

Figure 18: TLC-7528 Pinout[17]

14See Figure 211
15DIP... Dual Inline Package
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4.7.2 1IDT7201 CMOS FIFO Buffer

The IDT7201 is an asychronous CMOS FIFO. That means, that it can be read with
a completely independant speed from which it is written and vice versa. It has 9 bit
words, which can be seen in Figure I3, and can store up to 256 words[18]. It is used
as a buffer to store data describing the targeted waveform in order to free time on the
parallel bus for interaction with the 16550 UART.

wl] 1 ~ 281 Voo
sl 2 2711 Da
sl 3 o6l Ds
D214 2501 De
ol 15 24| 1 D7
Dol 6 231 FLRT
xil] 7 22| 1 Rs
FFl g 211 EF
ol ]9 201 XO/MF
a1 10 19l ] o
@l ] 11 18— Qs
sl ] 12 17 s
sl | 13 16— Qu
GNDL] 14 151 R

2679 drw 02a

Figure 19: IDT-7201 Pinout[18]

4.7.3 Theory verfication

Before tests of the complete unit were conducted, the functionality of the device and the
validity of the knowledge of operations were performed. For that the DAC was directly
connected to the ATMega without the FIFO in front of it. A saw was generated on only
the DACA channel, which was put into voltage mode as described in the datasheet[17]
and seen in Figure P0. After the result seen in Figure P11 was measured, a lot of effort
was put in to determine the source of the heavy noise, however no obvious conclusions
can be made, execpt that it comes from the DAC itself and is consistant over whatever
frequency used. A damaged IC could be the reason or a sloppy production progress.
Filters can be used to reduce the noise, however this was not done in this thesis, as the
generated audio does not seem to suffer from these non-linearities as badly as when
measured standalone.
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voltage-mode operation

It is possible to operate the current multiplying D/A converter of these devices in a voltage mode. In the voltage
mode, a fixed voltage is placed on the current output terminal. The analog output voltage is then available at
the reference voltage terminal. Figure 11 is an example of a current multiplying D/A that operates in the voltage
mode.

R R R

REF
(Analog Output Voltage)

Out (Fixed Input Voltage)

/_77 AGND

Figure 11. Voltage-Mode Operation

The following equation shows the relationship between the fixed input voltage and the analog output voltage:
Vo =V, (D/256)

Figure 20: TLC-7528 in voltage modet[i7]

T e e e e e e e e e e e e e e e e e e T T

=
&
—

REFA Voltage

ot
w1
————

(e}
5 A A A T A O A

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Time 1074

Figure 21: Measurement of a generated SAW signal via the TLC7528

4.7.4 Schematics

Based on the descriptions in the datasheets the schematic in figure 22 was developed.
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Element Description Diodes D1 through D4 are used as OR-Gates in conjunction
with R1 and R2 to generate the ~MODRD and -MODWR signals for the D Flip-Flop
™ and FIFO respectively by these formulas:

-MODRD = -RD V -MS2
-MODWR = -WRV -MS2

On a read access the output enable of the D-Latch becomes low, which writes the
status bits of the FIFO onto the data bus. C1, C2 and C3 are for stability reasons and
are good practice similar to the UART module. 74HCO00 is a quad NAND-Gate[20],
which is only used for inversion, chosen, like the 74HC374, for availability reasons.
The A part of the NAND-Gate inverts the MR signal from the bus to a =MR signal, as
the FIFOs reset is low active. The B part of the NAND-Gate inverts the FIFO Empty
flag. It's output is connected to the =WR input of the DAC, which means, that the DAC
doesn’t convert the input anymore, if the FIFO Empty flag is set to low.

The NE555 generates the audio clock signal, which should be the double of 44.1kHz™,
as 44.1kHz is the standard samling rate of CD-Audio[?1] and 2 channels need to be
sampled. Resistors R9 and R10 togehter with C7 form the Oscillator part of the NE55.
C4 is for stability reasons and doesn’t define the frequency of the oscillator.

The generated clock is used for the —=RD of the FIFO and inverted on the DAC, which
makes the data available on the output before being stored into the DAC, as it receives
the signal to store the data, after the FIFO makes it available on the bus.

The DAC is operated in voltage mode, as described in Figure PO, with it's voltage
source beeing available at either 3.472V,, for professional audio or 0.894V,, for con-
sumer audio, as defined per convention.[22] The voltage source can be controlled via
Jumper JP1.

C5 and C6 together with the load resistance on the audio jack form a high pass with a
cutoff frequency of

= 0.159154943Hz

_ 1 _ 1
fC ~ 27RC — 2xmx10KQx100uF

which should cover the hearable spectrum. The high pass was needed to generate a
positive and negative half of the wave form, as the DC-Offset with a frequency of OHz
is orders of magnitudes lower, than the f. of the highpass gets filtered away.

R7 and R8 have been installed in order to unload the capacitors after device poweroff.

1674HC374[19]
7Because we have 2 output channels
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Functional Description On a read of the module the =MS2 line goes low as well as
the =RD line, which combined by the as OR gate used diodes D1/D2 and resistor R1
forms the MODREAD signal. The modread signal is passed on to the —=OE pin of the
D-Flip-Flop which writes the FIFO status bits onto the data bus.

On write the same or gate is formed with diodes D3/D4 and resistor R2 which combines
signals —-MS2 and —-WR into MODWRITE. MODWRITE is then fed into the =W pin of
the FIFO which stores the data on the data bus into it’s internal buffer.

The FIFO is read with the clock generated by the NE555 (see the NE555 paragraph
below) which puts the data onto the bus between FIFO and DAC. The DAC reads the
data into its internal buffer after the FIFO has put it onto the DATA lanes due to the
inversion by the B part of the 74HCO00 and the output beeing mapped to the —CS pin of
the DAC. When the FIFO is empty it produces nonsense as output, to mittigate errors
resulting from this the —=EF output of the FIFO is inverted by the C part of the 74HCO00
and put onto the =WR pin of the DAC.

The maximum amplitude can be selected by jumper JP1. Generated waveforms by
the DAC are filtered against a DC offset via the highpasses built by C5/R7 and C6/R8
respectively. The resulting waveform can be measured on audio jack J1.

NE55 Clock Source Though used as a clock source, the NE555 is a bad clock
source, if a stable frequency is needed, because it varies widely with temperature,
preasure and ageing elements. A better solution would have been a quartz, which
is divided down to the desired frequency, which was what CD-Drives used to do, but
more commonly in modern CD Drives, an ASIC ™ with an internal PLL is used, thus
the required quartz can no longer be sourced via conventional electronic resellers.

4.7.5 DAC Module Read

On a read the status bits of the FIFO, which has been latched into the 74HC374 D-
Flip-Flop, are written onto the Data bus. Table 8 defines the layout of these status bits
on the data bus.

18ASIC...Application-specific integrated circuit
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| Bit position | Usage |
0 FIFO empty flag
Not used (originally FIFO low)
FIFO half full

FIFO full

Not used

Not used

Not used

Not used

N OO WN =

Table 5: The layout of the Data Bus on DAC read

4.7.6 Demonstration Software

SAW Generator To prove that read and write access from the D Flip-Flop and the
FIFO are working, the same saw signal has been generated as in figure 21 , however
the signal was put into the FIFO and not the DAC directly. The resulting saw wave
can be seen in figure 23 together with the FIFO Empty flag. The FIFO Empty flag, as
explained before, is inverted and starts/ends the complete D/A conversion, until further
data is received.

S ) 3 I O B |

—o> REFA | |
5 -=a> —EF i

REFA Voltage

[+

N
FT T T T 1T T 1T T T T T T T T T T T T T T T T T T T T 3T 1T
I

206 21 215 22 225 23 235 24 245 25 255 26
Time 1072

Figure 23: Measurement of a generated SAW signal with the FIFO Empty flag

The time difference betwen a store and complete write cycle can be seen in figure P35,
while figure P4 shows the transmission between dac and fifo in more detail.
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Figure 25: A fifo

store operation in contrast to the load operation

The initialisation routines and read/write operations for the DAC module are basically
the same as for the UART module, and have thus been ommitted. They can be seen

in listing 2.

int routine(){
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for(uint8_t i = 0; i < OxFF; i++){
write_to_dac(0x00, i);

}
write_to_dac(0x00, 0x00);

_delay_ms(10);
return 0;

Listing 4: SAW Generation for the DAC with FIFO

Sine Generator As a further example a sine was generated and played on the DAC.
The ATMega itself is not powerful enough to generate the sine on the fly, therefore
a lookup-table had to be generated, which can be seen in listing B. How the data is
transmitted to the FIFO can be seen in listing B and figure P8, and the resulting sine on
both output channels can be seen in figure P4.

uint8_t sine_table[256];
for(size_t i = 0; i < 256; i++){
sine_table[i] = OxFF&((int) ((sin(i/((double)255)*(3.141592x2))x*
127.5+127.5)));

L J

Listing 5: Sine LUT Generation

The look-up table has a size of 256, which is the maximum value an 8 bit integer can
take. This size was chosen to make operation faster as it only takes one cycle to load
an array value into a register and another one to store it into the GPIO register. The
sine table in further examples was pre-genrated on the compiling host to reduce startup
time. The method shown in listing & is not fast due to the lack of a floating point unit on

the AVR. [14]
rint routine(){
for(uint8_t i1 = 0; i < OxFF; i++){

write_to_dac(i%2, sine_table[i]);

}

write_to_dac(0x00, 0x00);
write_to_dac(0x01, 0x00);

_delay_ms(10);
return 0;
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Listing 6: DAC Sine Generation

Mode: |@Repeated  + | Trigger: |Auto - simple Pulse rotocol | position: |1.45 ms B
B singe P ru
Buffer: (10 <4 Source: | Digita = Base: 366941094 us/div |+ | =
+ .= T
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Enable 1

Clock
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Figure 26: Storage and retrieval of a sine to and from the FIFO
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Figure 27: Measuremet of the generated sine from the sine LUT on DACA and DACB
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4.7.7 Addressing DACA and DACB

The DAC used has 2 output channels, which can be selected by the ~DACA/DACB
pin as seen in figure A8. This pin was mapped to bit 0 of the address bus in order to
make use of it. Bit 8 on the fifo was used to store the bit. It is not implemented with
half the bus clock to make both channels independent of each other. This however
uses more time on the backend because it means the FIFO is used up at twice the
speed. No current example makes use of this, but it may be used in future examples
and implementations on this unit.

On the audio jack DACA is mapped to the right channel and DACB to the left channel.

4.7.8 Final Module

The final module can be seen in figure P8 with, from bottom to top, the 74HC374 D-
Flip-Flop, the IDT-7201 FIFO, the 74HC00 NAND-Gates, the TLC-7528 DAC and the
NESS55 oszillator. The jumper on the left is the voltage select and the jumper on the
right the clock select. The two pin headers on the top have been installed for voltage
measurement on the left and right audio channels while the audio jack is in use.
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Figure 28: The final DAC module

4.8 FPGA to Hardware interface

To make the Hardware work with the FPGA’s 3.3V I/O, level shifter have been installed,
and a FPGA module was built. This module maps the I/0O Pins in a similar way to
the ATMega 2560 used in examples before. The bidirectional 5V<->3.3V logic level
converters have been obtained on amazon, and are not well documented. Their func-
tionality is tested and verified in both directions, which can be seen in figures P9 and
B0. The schematic was determined through measurements with a multimeter, and the
schematic in Figure B1 shows similar resistor values in the same configuration [23].
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Figure 29: 3.3V to 5V conversion using the level shifter

The in Figure shown output on the HV side corresponds with the schematics in
Figure B, where one can see, that the resistor R2 is loading the bus capacitance to a
5V high state.
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Figure 30: 5V to 3.3V conversion using the level shifter
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Figure 31: The internal schematics of the level shifter[23]

Daniel Plank FPGA to Hardware interface 40



4.8.1 Measurement error

During an attempt to measure wether the level shifters in the final module were working,
a measurement between the LV and the HV side showed only a difference of 0.7V. After
some troubleshooting, it was found, that the Analog Discovery has clamping diodes
against the 3.3V rail shown in figure B2. These diodes produce the 0.7V offset and
prevent the parallel bus from rising to 5V when a digial I/O pin of the Analog Discovery
2 is connected to the bus. [24].

DI1E - D26 =DB35406F
" . DVCC3V3

D27

GND

IN 5C1 N & 55 5. VIN SC1 P
NS N 38 3 L VINSCI P

D 23 4 GND

OUT5V0 USK VOUTSVO USR
VOUT AWG2 3 VOUT AWGI .
(o] 2 Aer—eNp RI20 TRIG 1
1 PRGISBB221MBIRB

5 R222

14 13 L= DIOL
PRG1SBB221MBIRB

121
ét] ? P_é-l DIO 1
6 3 PRGISEB22IMBIRB

4 3 R226 DIO 2

<<=

2 =
prT6] PRGISBB22IMBIRB
HDR-2x15 R228 DIO 3
PRGISBB22IMBIRB
R230
PRGISBB221MBIRB
R23) DIO 5
PRGI8BB221MBIRB
R234 DIO 6
PRGISBB22IMBIRB
Eé DIO 7
PRGISBB22IMBIRB

DIO 4

Figure 32: The internal clamping diodes of the Analog Discovery 2[15]

4.8.2 Final Module

The final module can be seen in figure B3 without the FPGA attached. The blue mod-
ules below are the level shifters.
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Figure 33: The final FPGA interface module with the level shifters
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5 TEXTADVENTURE

To illustrate how the components work together and can be used in various different
applications, a small text-adventure with audio effects was written in C. The main goal
was to show the capabilities of even small systems like the one developed.

5.1 General Implementation details

5.1.1 General definitions and pinout of the AVR

Like the examples seen before, the textadventure was implemented on an Al-
Mega2560 and uses 3 different Registers for transmission: PORTF, PORTK and
PORTL for address bus, data bus and control bus respectively, as can be seen in
listing [@

#ifndef _AVR_H_TEXT
#define _AVR_H_TEXT

#define F_CPU 16000000UL
#include <avr/io.h>

#define MR_SHIFT 0
#define WR_SHIFT 1
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#define RD_SHIFT 2
#define CS_UART_SHIFT 3
#define CS_DAC_SHIFT 4

#define ADDR_REG PORTK
#define DATA_REG PORTF
#define CTRL_REG PORTL

#define ADDR_DDR_REG DDRK
#define DATA_DDR_REG DDRF
#define CTRL_DDR_REG DDRL

#include <util/delay.h>

#define BUS_HOLD_US 1

void set_addr(uint8_t addr);

#endif

&~

Listing 7: The avr.h header file

The in listing @ shown preprocessor macros MR_SHIFT, WR_SHIFT, RD_SHIFT,
CS_UART_SHIFT and CS_DAC_SHIFT are used to indicate the position of the cor-
responding control lines inside the control bus register. All other shift values are the
same bitordering in input as in output.

The macro BUS_HOLD US is used to tell the AVR how many microseconds it takes
for the data bus to be latched into input register of the devices on write, or how long it
takes for the data bus to become stable on read. A delay of less than 1 microsecond
is not possible due to limitations of the AVR and the bus capacity, which increases the
BER™ to a level which effects regular operation.

5.1.2 Read and Write routines

The set_addr function is the same as in the UART example code in listing il and has
therefore been omitted, execept for its definiton in the avr.h file in listing [@. The read
and write functions for the UART module and the DAC module are the same as in the
example code for the modules and have been ommited therefore as well.

9BER...Bit Error Ratio
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5.1.3 UART and DAC update polling

The AVR constantly polls the DAC and UART modules for updates as can be seen
in listing B. The routine_ MODULE functions poll their respective modules for updates
as can be seen in listings 9 and @0. When a character is received, it is stored inside
a bufer array and regular operation continues. If the —EF status bit is set in a read
from the dac, the feed_dac function is called, which stores 256 bytes into the DAC, and
regular operation continues.

r

int routine(){
routine_dac();
routine_uart();
routine_game()
return 0;

’

Listing 8: The routine function looped by the main

void routine_uart(){

uint8_t received = read_from_uart(UART_REG_LSR);
if(received & 0x01){
received = read_from_uart(UART_REG_TXRX);
ingest_user_char(received);
if(received == "\r’){
writechar_16550('\n");

}
writechar_16550(received);
}
return;
}
S

Listing 9: The routine function for the UART

void routine_dac(){

uint8_t received = read_from_dac(0x00);

if(!(received & (0x01<<0))){
feed_dac();

}

return;

Listing 10: The routine function for the DAC
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5.1.4 Program execution path

On microprocessors it is required to not leave a return path for programs, as a return
path would lead to the microcontroller either resetting or seicing to work until the next
power cut. Therefore the program performs all it’s tasks in an infinite loop. This loop
can be seen in listing B and in figure 34.
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INITIALISATION ROUTINES
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Read from UART
Line Status Register

YES
Is Data in Rx Latch? Process input user character

Get DAC Status

YES

Is FIFO Empty P Fill fifo with sound data

Process User input

Has command been

: Process command
fully received

Figure 34: A Flow-Chart of the program execution path
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5.2 DAC sound generation

5.2.1 DAC modes

The DAC can produce any waveform described by 8 bit unsigned PCM code. Though
possible to feed predefined waveforms into the DAC, the AVR doesn’t have enough
onboard memory to store more than a few seconds of these waveforms.

For exampl: To store one second of 8 bit unsigned PCM Code at 2 times 44.1KHz
sampling rate of the DAC the AVR would have to store s = 2 x 4410072 x 1s = 2 x
44100Bytes = 88.2KB, but it has only a total of 256KB of onboard flash[T4] which results

in a total track lengh of ¢ = 2242 = 2.9s with only one track.

Therefore the AVR generates the audio during runtime. In order to do that it has 6
modes in which it can operate, as can be seen in Listing A1

1. silent mode: The DAC produces no output at all and is completely silent.

2. sine mode: The DAC produces a sine with a specific frequency and an amplitude
of 255.

3. square mode: The DAC produces a square wave with a specific frequency and
an amplitude of 255.

4. saw mode: The DAC produces a saw wave with a specific frequency and an
amplitude of 255.

5. noise mode: The DAC produces a pseudo-random white-noise with a maximum
amplitude of 255.

6. triangle mode: The DAC produces a triangle wave with a specific frequency and
an amplitude of 255.

To perform these tasks the DAC takes two parameters, again seen in listing A1

e A frequency deviation: Used to tell the DAC how much the desired frequency
deviates from the base frequency of each waveform.

e A mode: Used to tell it which waveform to generate
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/* The operation modes of the dac used for generation of different tones */
#define DAC_MODE_SILENT
#define DAC_MODE_SINE
#define DAC_MODE_SQUARE
#define DAC_MODE_SAW
#define DAC_MODE_NOISE
#define DAC_MODE_TRIANGLE

o A WNREFE O

extern uint8_t dac_mode;
/* This variable is used to deviate the frequency from the baseline
frequency
* of around 1kHz. If this integer is positive it makes the produced
waveform
* longer, if it is negative the produced waveform becomes less sharp, but
the
* frequency goes up. 0 is the baseline x/
extern intl6_t dac_frequency_deviation;

Listing 11: The DAC operation modes

void feed_dac(){

/* Internal counter for positioning inside the currently playing
* waveform x/

static uint8_t threash = 0x00;

/* Used to generate the desired frequency offset if the waveform should
* be made "longer" --> the frequency made lower from baseline
*/

static intl6_t freg_delay_cnt = 0x00;

switch(dac_mode){

default:
case DAC_MODE_SILENT:
for(uint8_t i1 = 0; i < OxFF; i++){
write_to_dac(i%2, 0);

break;

case DAC_MODE_SINE:
/* Generates a sine from a predetermined sine table in program
* space x/
for(uint8_t i = 0; i < (OxFF/2); i++){
write_to_dac(1,
pgm_read_byte(&sine_table[threash]));
write_to_dac(0,
pgm_read_byte(&sine_table[threash]));
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if(dac_frequency_deviation >=0){
freq_delay_cnt++;
if(freq_delay_cnt >=
dac_frequency_deviation){
freq_delay_cnt = 0;

threash++;
}
}else{
threash -= dac_frequency_deviation;
}
}
break;

case DAC_MODE_SQUARE:

for(uint8_t 1 = 0; 1 < (OxFF/2); i++){
if(threash > (0xFF/2)){
write_to_dac(0, OxFF);
write_to_dac(1l, OxFF);
}else{
write_to_dac(0, 0);
write_to_dac(1l, 0);
}
if(dac_frequency_deviation >=0){
freq_delay_cnt++;
if(freg_delay_cnt >=
dac_frequency_deviation){
freg_delay_cnt = 0;

threash++;
}
}else{
threash -= dac_frequency_deviation;
}
}
break;

case DAC_MODE_SAW:

for(uint8_t i = 0; 1 < (OxFF/2); i++){
write_to_dac(0, threash);
write_to_dac(l, threash);
if(dac_frequency_deviation >=0){
freq_delay_cnt++;
if(freq_delay_cnt >=
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dac_frequency_deviation){
freg_delay_cnt = 0;

threash++;
}
}else{
threash -= dac_frequency_deviation;
}
}
break;

case DAC_MODE_NOISE:

for(uint8_t i = 0; 1 < (OxFF/2); i++){
static uintl6_t noise_cnt = 0;
write_to_dac(1,
pgm_read_byte(&noise_table[noise_cnt]));
write_to_dac(0,
pgm_read_byte(&noise_table[noise_cnt]));

noise_cnt++;

if(noise_cnt >= 1024){
noise_cnt = 0;

break;
case DAC_MODE_TRIANGLE:

for(uint8_t i = 0; i < (OxFF/2); i++){
static int8_t direction = 1;
if((threash == OxFF) | !threash){
direction = -direction;
}
write_to_dac(0, threash);
write_to_dac(l, threash);
if(dac_frequency_deviation >=0){
freg_delay_cnt++;
if(freq_delay_cnt >=
dac_frequency_deviation){
freq_delay_cnt = 0;

threash += direction;
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}else{
if((dac_frequency_deviation =*
direction) >
(OXFF - threash)){
threash = OxFF;

continue;
}
threash = (dac_frequency_deviation *
direction);
}
}
break;
}
return;

Listing 12: The DAC waveform generation code

5.2.2 Tones and Tracks

A sound track inside the textadventure consists of independent tones. A tone is a
waveform at a specific frequency played for a specific time. To perform the specific time
functionality independant of DAC speed, an ISR = on the AVR was used to change to
the next tone every millisecond. A track is an array of tones with an end marker tone
at the end, which is a tone with a length of 0Oms. The end marker tone tells the ISR
to reset to the initial tone. The ISR can be seen in Listing I3, and the sound update
function, which actually updates the current tone and is responsible for playing a track

in listing 4. The output of an example track can be seen in figures B3 and B8.

ISR(TIMERO_COMPA_vect)
{

update_sound();

}

Listing 13: The ISR which fires every millisecond

20ISR...Interrupt Service Routine
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void update_sound(){

static uintl6_t audio_time 0;

static size_t tone_pointer = 0x00;

static struct tone_t current_tone = {DAC_MODE_SILENT, 0,0};
if(current_track == NULL){

audio_time = 0x00;
return;
}
audio_time++;
static const struct tone_t *x old_track = NULL;

if(audio_time >= current_tone.length ||
current_track != old_track){

if(old_track '= current_track){
tone_pointer = 0;
audio_time = 0x00;
old_track = current_track;
}
memcpy_P(&current_tone,&(current_track[tone_pointer]),
sizeof(current_tone));

if(current_tone.length == 0){
tone_pointer = 0;
memcpy_P(&current_tone,&(current_track[tone_pointer]),
sizeof(current_tone));

dac_mode = current_tone.waveform;

dac_frequency_deviation = current_tone.frequency_deviation +
global_frequency_offset;

audio_time = 0x00;

tone_pointer++;

}

return;

Listing 14: The sound update function
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Figure 35: The output of an example track part 1
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5.2.3 Track switching

To switch tracks on different actions, there is a map of tracks associated with rooms.
Every room has an associated track, where the association can change on actions
performed, which allows for a game atmosphere change. Track changes are performed
outside the ISR, which could theoretically result in a race condition, where the ISR
would load a faulty track for 1ms, if the track change was not performed fast enough,
but this is prevented by disabling global interrupts during a track change.

5.3 User command interpretation

5.3.1 Command structure and parsing

As in other text adventures [?5] a command consits of one line of input terminated by
a newline or line feed character \n. The carriage return character, which is sometimes
transmitted with a line feed character, is not parsed in this text adventure. Incoming
character parsing can be seen in Listings 8 and 5.

As one command is parsed, each part is required to be separated by an empty space
character, which is ascii code 32 [26]. The first part of the given input is then compared
to an array of actions a user can perform, for example use or search, as can be seen
in Listing I8

In listing B the comment echo back can be seen. The write_char function, writes it's
parameter to the user., in this case the input sent by the user. This is done to write
what the user typed out to the terminal as otherwise one would not be able to see what
has been typed on any VT100 compatiable terminal[3] or terminal emulator.

void ingest_user_char(char in){
if(in == Ox7F ) {

command_buffer[command_buffer_pointer--] = 0x00;
}else{

command_buffer[command_buffer_pointer++] = in;
}
return;

Listing 15: The character ingest function

The in Listing @3 shown branch overrides the last received character with 0x00, which
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is ascii NUL, and decrements the buffer pointer by one if the received character was

0x7F. 0x7F is the ADCII DELETE character [26] which instructs the receiving end, that
the last received character was a mistake and should be purged. This is also what a
vt100 compiant terminal emulator sends, when the backspace or delete key is pressed

r

-

void routine_game(){

if(command_buffer_pointer >= sizeof(command_buffer)){

command_buffer_pointer = 0x00;
memset (command_buffer, 0, sizeof(command_buffer));

println("\nToo much input!");

return;
}
if(command_buffer[command_buffer_pointer-1] == '\n’' ||
command_buffer[command_buffer_pointer-1] == ’'\r’'){
int8_t action_id = -1;
for(size_t i = 0; i < sizeof(action_table)/sizeof(const charx);
i++){
if(strncasecmp(action_table[i], command_buffer,
strlen(action_table[i])) == 0){
action_id = i;
break;
}
}
if(action_id < 0){
println(info_table[1]);
}else{
perform_action(action_id);
}
command_buffer_pointer = 0x00;
memset (command_buffer, 0, sizeof(command_buffer));
}
return;

Listing 16: The command parsing function
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5.3.2 Command parameters

Command paramters are interpreted as the string, that follows the action and the space
behind it. As can be seen in the case for ACTION_USE in Listing @4, the use item
function is passed the command buffer® plus the length of the entered command plus
one for the space. So the string starting at the passed address should match the
start address of the parameter. If no parameter is supplied, the address should point
to a character containing ASCII NUL, which marks the end of a string, because after
command parsing, the string is overwritten with zeros as seen in Listing 6.

( )
void perform_action(uint8_t action_id){

putchar_16550(’'\n’, NULL);
switch(action_id){
default:
case ACTION_HELP:
println("You can:");
for(size_t i = 0; i < NUM_ACTIONS; i++){
println(" %s",action_table[i]);

}

break;

case ACTION_DESCRIBE:
describe_room(current_room, false);
break;

case ACTION_NORTH:
case ACTION_SOUTH:
case ACTION_WEST:
case ACTION_EAST:
move_direction(action_id -1);
break;
case ACTION_INVENTORY:
print_inventory();
break;
case ACTION_SEARCH:
print_room_item();
break;
case ACTION_TAKE:
consume_room_item(command_buffer+
strlen(action_table[ACTION_TAKE])+1);
break;
case ACTION_USE:
use_item(command_buffer+
strlen(action_table[ACTION_USE])+1);

2lwhich is an address in memory
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break;

};
println(info_table[3]);

return;

- Y,

Listing 17: The command execution routine

5.4 Gameplay

The game itself plays like a regular game with limtations set in direction. Players can
search for items in each room and grab the found items as can be seen in figure B2.
The general gamplay is perfomred via altering the map data and the strings output to
the user.

Daniel Plank Gameplay 59




You are on the dead end of a lonely road, You look right and left ofuyou, but
ou cannot remember why you are here, ., You are terrified,

INIT
LOMELY ROAD

You are on the dead end of a lonely road, You look right and left ofuyou, but
you cannot remember why you are here, ., You are terrified,

describe
Lze
inventory
zearch
take
What are you going to do¥
dearch
Invalid command!
zearch

fou found a PISTOL
What are you going to do¥
take piztol

ou took the PISTOL
What are you going to do¥
narth

Moving towards north
SH DIRT ROAD

You travel a bit towards the moon, you think that's the way to go, You find a

bear in the middle of the
What are you going to do?
uze pistol

fou can't uze that!
What are you going to do¥
uze zauzage

fou can't uze that!
What are you going to dof?
zearch zauazage

You found a SAUSAGE
What are you going to do¥
take zauzage

fou took the SAUSAGE
What are you going to do¥
uze zauzage

it ran away,..
What are you going to do?
[]
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Figure 37: A regular beginning of the game
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5.4.1 Memory constraints

The AVR has 8kB of internal SRAM, which are used for stack and heap [14]. During
the build of the program an ELF file can be obtained, which contains infromation on the
programs structure and memory usage on boot. Strings and variables are contained
within the .data section of the elf file and loaded into memory during boot[?7]. This
is done for integer variables as well as for strings, which makes the use of strings
limited not to the flash size but to the RAM size of the AVR. To save memory, sound
tracks as well as the sine and noise table have been put into program space with the
PROGMEM attribute as described by the avr-libc documentation[28]. In listing 12 a
read from program memory can be seen in the noise and sine modes. Strings have
not been put into programmspace, as this would require each string to be declared
independantly and then be put into arrays[28] as is done now. Which would make the
code much less readable and increase overhead as well as make the usage of buffers
nescessary in order for the override of the printf function to work.

5.4.2 Story

The basics of the storyline are, that you wake up in the middle of a forest and don’t
remember anything. You have to get through the forest to an old house, while having
to get rid of a bear, which is blocking the way. Inside the house you have to get a
computer to start. The game then proceeds to get recursive, and your goal is to break
out of the recursion.

5.4.3 Recursion

The game, when performing the recursion, resets your inventory and internal state
machines, before putting you back to the starting point. However, by altering the ori-
entation of rooms, altering the list of items found inside rooms and by altering the texts
output by the game, the atmosphere and the outcome changed.

5.4.4 Computer State Machine

One example of a state machine inside the game is the computer inside the old-house.
The computer needs three items: A keyboard to type on, something to boot from, for
example a floppy disk, and a screwdriver to start it. The state machine implementation
can be seen in Listing A8 and the state diagram in Figure 38.
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bool perform_computer_action(uint8_t item_id){

static bool fleshed = false;

if(item_id == ITEM_KEYBOARD &&
computer_state == COMPUTER_STATE_NOTHING) {
computer_state = COMPUTER_STATE_KEYBOARD;
inventory[item_id] = false;
println("You connected the keyboard");
return true;

if(item_id == ITEM_FLOPPY &&
computer_state == COMPUTER_STATE_KEYBOARD) {
computer_state = COMPUTER_STATE_FLOPPY;
inventory[item_id] = false;
println("You inseted the floppy disk");
return true;

}

if(item_id == ITEM_FLESH &&
computer_state == COMPUTER_STATE_KEYBOARD) {
computer_state = COMPUTER_STATE_FLOPPY;
inventory[item_id] = false;
println("You inserted the flesh into the floppy drive");
fleshed = true;
return true;

}

if(item_id == ITEM_SCREWDRIVER &&
computer_state == COMPUTER_STATE_FLOPPY) {
computer_state = COMPUTER_STATE_FLOPPY;
inventory[item_id] = false;

println("You start the computer with the screwdriver, sit down"
" and watch it boot into a textadventure:");

reset_game(fleshed);
return true;

return false;

Listing 18: The computer FSM
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else
else else

keyboard boot medium

—{ Nothing

Bootable

screwdriver

Figure 38: A state diagram of the computer state machine
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6 FPGA DEeVELOPMENT

The project started out with the desire to build a CPU from scratch. Examples such
as The NAND Game [29] and Ben Eater’s Breadboard Computer series [30] served as
inspirations and guidance during development.

At first, a design similar to Ben Eater’s, consisting solely of discrete integrated circuits,
was considered, but soon discarded in favor of an FPGA-based design. Designing the
logic alone was a difficult task, implementing it in discrete hardware would have pushed
the project far over the allotted maximum development time.

RISC-V was chosen as the instruction set architecture for the processor. Ilts modu-
lar design with a very small base instruction set makes it easy to implement a basic
processor that is still fully compatible with existing software and toolchains.

As a starting point, a Terasic DEO development board®? containing an Altera Cyclone
l1I”? FPGA was borrowed from the school’s inventory. It was used to implement a first
version of the core.

The only method of synthesis for Altera devices is to use the proprietary Quartus IDE.
However, the last version of Quartus to support the Cyclone Il series of FPGAs (ver-
sion 13.1) had already been out of date for several years at the start of the project.
Because of this and the increasing resource demand of the developing core, an Arty
A7-35T development board® with a Xilinx Artix-722 FPGA was ordered from Digilent.

A comparison between the two FPGAs themselves can be seen in [able 8, a compari-
son between the peripherals on the development boards in [able 7.

\ Altera EP3C16 \ Xilinx XC7A35T

Logic Elements 15000 33280
Multipliers 56 90
Block RAM (kb) 504 1800
PLLs 4 5
Global clocks 20 32

Table 6: Comparison between Altera and Xilinx FPGAs

22https://www.terasic.com.tw/cqgi-bin/page/archive.p(?No=364
23https://www.1intel.com/content/www/us/en/products/programmable/Tpga/
cyclone-11i.htmC
24https://store.digilentinc.com/arty-a7/-artix-7-tpga-development-board-
tfor-makers-and-hobbyists/
Shttps://www.x1linx.com/products/silicon-devices/fpga/artix-7.html

Armin Brauns FPGA Development 64


https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=364
https://www.intel.com/content/www/us/en/products/programmable/fpga/cyclone-iii.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/cyclone-iii.html
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html

| Terasic DEO | Digilent Arty A7-35T

Switches 10 4
Buttons 3 4
LEDs 10 + 4x 7-segment 4 + 3 RGB
GPIOs 2x 36 | 4x PMOD + chipKIT
Memory 8MB SDRAM 256MB DDR3L
Others SD card, VGA Ethernet

Table 7: Comparison between the peripherals on Terasic and Digilent FPGA develop-
ment boards

While the Digilent board offers fewer 10 options, the DDR3 memory can be interfaced
using Free memory cores and allows for much larger programs to be loaded, pos-
sibly even a full operating system. The missing VGA port has been substituted by an
HDMI-compatible DVI interface that is accessible through one of the high-speed PMOD
connectors.

6.1 Tooling

FPGA design is done using a Hardware Description Language (HDL). The two most
well-known HDLs are Verilog and VHDL (VHSIC (Very high speed integrated circuit)
HDL). As part of our studies at HTL, we exclusively worked with VHDL. For this reason,
and because VHDL offers a strong type system [31], it was selected as the language
of choice for the project.

To refresh the reader's memory on the VHDL language, and as a quick guide for the
tools involved in this project, see Appendix C.

6.1.1 Vendor Tools

The conventional way to work with FPGA designs is to use the FPGA vendor’s devel-
opment environment for simulation, synthesis and place-and-route. All of these tools
are proprietary software specialized to a certain FPGA manufacturer, so a change of
hardware also requires changing to a completely different software solution.

Vendor tools are usually free-of-charge for basic usage, but this also means there is no
guaranteed support. During the development of this project, several bugs and missing
features were found in vendor tools that required workarounds.
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6.1.2 Free Software Tools

A somewhat recent development is the creation of Free Software FPGA toolchains. A
breakthrough was achieved by Claire (formerly Clifford) Wolf in 2013 with yosys [32],
[33], a feature-complete Verilog synthesis suite for Lattice’s 1CE40 FPGA series. Since
then, both yosys and place-and-route tools like nextpnr [34] have matured, however
Lattice’s iCE40 and ECP5 remained the only supported FPGA architectures for place-
and-route.

Thus, two obstacles remained for Free toolchains to be viable for this project: synthe-
sizing from VHDL code and synthesizing to Artix-7 FPGAs. During the development of
the project, both of these were solved: Tristan Gingold released ghdlsynth-beta [35],
a bridge between GHDL [36] and yosys allowing VHDL to be synthesized just the
same as Verilog, and Dave Shah added Xilinx support to nextpnr [37]. The latter was
preceded by many months of volunteer work reverse-engineering the Xilinx bitstream
format as part of Project X-Ray [38].

With these two pieces in place, the project was switched over to a completely Free
toolchain, removing any depencies on vendor tools:

yosys, with ghdl as a frontend for processing VHDL and ghdlisynth as a bridge
between them, is used to synthesize the design

nextpnr-xilinx, together with the Project X-Ray database, is used for place-and-
route

tools from Project X-Ray are used to convert the routed design to a bitstream

openFPGALoader is used to transfer the bitstream to the FPGA via JTAG

7 THe CoRE

The core implements the rv32i architecture as specified by the RISC-V standard [39].

As can be seen in Figure 39, it is constructed according to the traditional stages of a
RISC pipeline:
Fetch fetches the next instruction from memory.

Decode decodes the instruction into its constituent parts. At the same time, operand
values are loaded from any required registers.
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Figure 39: Block diagram of the CPU core

Execute performs the action required by the instruction, such as math performed by
the Arithmetic Logic Unit (ALU) or writing to Control and Status Registers (CSRs).

Memory loads values from or stores values to the system’s main memory or interacts

with memory-mapped hardware devices.

Writeback stores a potential result value from Execute or Memory stages to the des-

tination register.

7.1 Control

entity control is
generic (
RESET_VECTOR : yarm_word
)
port (
clk : in std_logic;
reset : in std_logic;

fetch_enable : out std_logic;
fetch_ready : in std_logic;
fetch_instr_out : in yarm_word;

decoder_enable : out std_logic;
decoder_instr_info_out : in instruction_info_t;

registers_data_a : in yarm_word;
registers_data_b : in yarm_word;

alu_enable_math : out std_logic;
alu_math_result : in yarm_word;

alu_valid : in std_logic;
alu_enable_cmp : out std_logic;
alu_cmp_result : in compare_result_t;
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csr_enable : out std_logic;
csr_ready : in std_logic;
csr_data_read : in yarm_word;
csr_increase_instret : out std_logic;

datamem_enable : out std_logic;
datamem_ready : in std_logic;

alignment_raise_exc : out std_logic;
alignment_exc_data : out exception_data_t;

registers_read_enable : out std_logic;
registers_write_enable : out std_logic;

-- TRAP CONTROL

may_interrupt : out std_logic;
-- the stage that will receive an interrupt exception
interrupted_stage : out pipeline_stage_t;

do_trap : in std_logic;
trap_vector : in yarm_word;

trap_return_vec : in yarm_word;
return_trap : out std_logic;

-- Instruction info records used as input for the respective stages
stage_inputs : out pipeline_frames_t
);

end control;
_

control.vhd

The control unit is responsible for coordinating subcomponents and the data flow be-
tween them. Internally, it is based on instruction_info_t structures, which
contain all the information required to pass an instruction along the different pipeline
stages. Before the fetch stage, when an instruction is first scheduled, it contains only
the instruction’s address (because nothing else is known about it). Then, information

is added incrementally by the different stages.

7.2 Decoder

(entity decoder 1is
port (
clk : in std_logic;
enable : in std_logic;

async_addr_rsl : out register_addr_t;
async_addr_rs2 : out register_addr_t;

alu_muxsel_a : out mux_selector_t;
alu_muxsel_b : out mux_selector_t;
alu_muxsel_cmp2 : out mux_selector_t;
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);
end decoder;

raise_exc :
exc_data

csr_muxsel_in : out mux_selector_t;

instr_info_in : in instruction_info_t;
instr_info_out : out instruction_info_t;

out std_logic;
: out exception_data_t

decoder.vhd

The decoder receives an instruction and interprets it. Among others, it determines

The source and destination register addresses

The pipeline stages that need to be run for the instruction

The ALU operation, if any

Whether the instruction should branch, and if so, under what condition

7.3 Registers

-
entity registers is

port (
clk : in std_logic;
read_enable : in std_logic;

write_enable : in std_logic;

addr_a : in register_addr_t;
addr_b : in register_addr_t;

—
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addr_d :

data_a

DE

end registers;

in register_addr_t;

: out yarm_word;
data_b :
data_d :

out yarm_word;
in yarm_word

registers.vhd

The registers store the 32 general-purpose values required by rv32i (each 32-bit wide).
They are accessible through two read ports and one write port. As specified by the
RISC-V standard, the first register ( x0 ) is hard-wired to 0, and any writes to it are
ignored.
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7.4 Arithmetic and Logic Unit (ALU)

entity alu is
port (
clk : in std_logic;
enable_math : in std_logic;
valid : out std_logic;
operation : in alu_operation_t;
a, b : in yarm_word;
math_result : out yarm_word;
-- compare inputs
-- do signed comparisons
enable_cmp : in std_logic;
cmp_signed : in std_logic;
cmpl, cmp2 : in yarm_word;
cmp_result : out compare_result_t
)
end alu;

alu.vhd

The ALU contains a math/logic unit as well as a comparator. It is used both explicitly
by instructions such as add or shiftl , as well as to add offsets to base addresses

for memory instructions and to decide whether an instructions should branch.

7.5 Control and Status Registers (CSR)

-
entity csr is

generic (
HART_ID : integer

);

port (
clk : in std_logic;
reset : in std_logic;
enable : in std_logic;
ready : out std_logic;

instr_info_in : in instruction_info_t;
data_write : in yarm_word;
data_read : out yarm_word;
increase_instret : in std_logic;
: in std_logic;

: in std_logic;

: in std_logic;

external_int
timer_int
software_int

mtvec_out
mepc_out

interrupts_pending :
interrupts_enabled :
global_int_enabled :
: out yarm_word;
: out yarm_word;

out yarm_word;
out yarm_word;
out std_logic;
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)3
end csr;
.

do_trap : in std_logic;
return_m_trap : in std_logic;

mepc_in : in yarm_word;
mcause_in : in yarm_trap_cause;
mtval_in : in yarm_word;

raise_exc : out std_logic;
exc_data : out exception_data_t

csr.vhd

The control and status registers contain configurations relevant to the core itself. For
example, they can be used to control interrupts.

7.6 Memory Arbiter

-
entity memory_arbiter is

port (
clk : in std_logic;
reset : in std_logic;
fetch_enable : in std_logic;
fetch_ready : out std_logic;
fetch_address : in yarm_word;

)8

fetch_instr_out : out yarm_word;

fetch_raise_exc : out std_logic;

fetch_exc_data : out exception_data_t;
datamem_enable : in std_logic;
datamem_ready : out std_logic;
datamem_instr_info_in : in instruction_info_t;
datamem_read_data : out yarm_word;

datamem_raise_exc : out std_logic;
datamem_exc_data : out exception_data_t;

-- little-endian memory interface, 4 byte address alignment

MEM_addr : out yarm_word;

MEM_read : out std_logic;

MEM_write : out std_logic;

MEM_ready : in std_logic;

MEM_byte _enable : out std_logic_vector(3 downto 0);
MEM_data_read : in yarm_word;

MEM_data_write : out yarm_word

end memory_arbiter;
.

memory_arbiter.vhd

Since both fetch and memory stages need to access the same system memory, access
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to this common resource has to be controlled. The memory arbiter acts as a proxy for
both fetch and data memory requests and stalls either until the other one completes.

7.7 Exception Control

end exception_control;
_

entity exception_control is
port (
clk : in std_logic;

fetch_raise_exc : in std_logic;
fetch_exc_data : in exception_data_t;

-- synchronous exceptions
decoder_raise_exc : in std_logic;
decoder_exc_data : in exception_data_t;

csr_raise_exc : in std_logic;
csr_exc_data : in exception_data_t;

alignment_raise_exc : in std_logic;
alignment_exc_data : in exception_data_t;

datamem_raise_exc : in std_logic;
datamem_exc_data : in exception_data_t;

-- interrupts

global_int_enabled : in std_logic;
interrupts_enabled : in yarm_word;
interrupts_pending : in yarm_word;

-- stage inputs for return address + trap value (instruction)
stage_inputs : in pipeline_frames_t;
interrupted_stage : in pipeline_stage_t;

may_interrupt : in std_logic;

do_trap : out std_logic;
trap_cause : out yarm_trap_cause;
trap_address : out yarm_word;
trap_value : out yarm_word

)8

exception_control.vhd

Several components in the core may raise a synchronous exception when an unex-
pected error (such as a malformed instruction or an unaligned memory access) occurs.
Additionally, asynchronous interrupts (like from a timer or a UART) can be triggered
externally. When an exception or an enabled interrupt is registered, program flow is
diverted to the trap handler, defined using the machine trap vector ( mtvec ) CSR.
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8 SoC PERIPHERALS

The complete FPGA design consists not only of the CPU core, but a number of compo-
nents that allow it to operate as well as to communicate with the outside environment.
They are connected to the core using a shared 32-bit bus.

8.1 UART

The easiest way to communicate with an embedded system is usually through a serial
interface. To ensure the best compatibility with existing software, a National Semicon-
ductor 16550 UART was reimplemented from scratch instead of creating a new design.
Thus, the modules’s functionality and design can be found in the 16550’s datasheet [4].

8.2 DVI graphics

As can be seen in Figure 40, the graphics module consists of several subcomponents:

e The VGA timing generator creates the impulses and counters necessary to drive
a VGA-, DVI- or HDMI-based display

e The text renderer draws text characters onto the screen using a built-in font ROM

e The TMDS encoder frontend converts the internal parallel signals into a set of
high-speed serial streams necessary for DVI or HDMI.

8.2.1 VGA timing

The timing of VGA signals dates back to analog monitors. Even though this original
purpose is only very rarely used nowadays, the timing remained the same for analog
and digital DVI all the way to modern HDMI.

In analog screens, the electron beams (one for each primary colour red, green and
blue) scan across the screen a single horizontal line at a time while being modulated
by the colour values, resulting in a continuous mixture of all three components. When
a beam reaches the end of a scanline, it continues outside the visible area for a small
distance (the “Front Porch”), is then sent to the beginning of the next line by a pulse
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Figure 40: Block diagram of the video core

of the hsync (Horizontal Sync) signal, and draws the next line after another short off-
screen period (the “Back Porch”).

The same applies to vertical timings: after the beam reaches the end of the last line, a
few off-screen Front Porch lines follow, then a pulse of the vsync (Vertical Sync) signal
sends the beam to the top of the screen, where the first line of the next frame is drawn
after several invisible Back Porch lines.

The VGA timing module generates these hsync and vsync signals as visualized in
Figure 41], along with a blanking signal (active during any front porch, sync and back
porch) and, while in the visible area (i.e. not blanking), the row and column of the
current pixel relative to the visible area.

8.2.2 Text renderer

The text renderer converts a logical representation of a character, such as its ASCII
code (henceforth referred to as its codepoint) to a visual representation (a glyph). This
conversion is achieved using a font, a mapping of codepoints to glyphs.

As can be seen in Figure 42, the current pixel coordinate (created by the VGA timing
generator) is split up into two parts: the character index, which specifies the on-screen
character the pixel belongs to, and the offset of the pixel within this character. The
character index is passed to the text RAM, which contains the codepoint for each on-
screen character. This codepoint, along with the pixel offset, is looked up in the font
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Figure 41: Diagram of VGA timing intervals

ROM to determine the colour of the pixel.

8.2.3 TMDS encoder

DVI and HDMI are serial digital transmission standards. Three data lines (correspond-
ing to red, green, and blue channels) along with a clock line transmit all colour in-
formation as well as synchronization signals. The encoding used for these signals
is Transition-Minimized Differential Signaling (TMDS). It is a kind of 8b/10b encoding
(transforming every 8-bit chunk of data into a 10-bit chunk) that is designed to minimize
the number of changes of the output signal.

8.3 Ethernet

The Arty development board contains an RJ-45 Ethernet jack connected to an Ethernet
PHY. The PHY handles the physical connection to an copper twisted pair Ethernet
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network (Layer 1 of the OSI model) and exposes a standardized media-independent
interface (MIl) to the FPGA. The LiteEth core [40], which is released under a Free
Software license, is used to integrate the Ethernet interface into the SoC.

8.4 WS2812 driver

A hardware driver for WS2812 serially-addressable RGB LEDs is also included in the
SoC. It was developed independently as part of the curriculum at HTL and later incor-
porated into the SoC.

address
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run
ready

colour
Shift Register/ | | dout Da' WS2812
::(> Output Timing LED

DO DI DO DI
{ WS2812

DO DI DO
o WS2812 ) WS2812 3

LED LED

Figure 43: Block diagram of the WS2812 driver

The driver is designed to be attached to external circuitry that provides colour data for
any given LED index (address). This can either be discrete logic that generates the
colour value from the address directly, or a memory that stores a separate colour value
for each address.

The LEDs are controlled using a simple one-wire serial protocol. After a reset (long
period of logic 0), the data for all LEDs is transmitted serially in one single blob. Each
LED consumes and stores the first 24 bits of the stream and applies them as its colour
value (8 bits each for red, green, blue), all following bits are passed through unmodified.
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Figure 44: Timing diagram for the WS2812 serial protocol

The second LED thus uses the first 24 bits of the stream it receives, but since the first
LED already dropped its data, these are actually the second set of 24 bits of the source
data.

Every bit is encoded as a period of logic 1, followed by a period of logic 0. The timing
of these sections determines the value, see Figure 44,

The exact timing differs between models, so all periods can be customized using gener-
ics in the VHDL entity.

8.5 DRAM

The Arty A7 development board contains a 256MB DDR3 memory module. Since the
FPGA only contains about 1.8MB of block RAM, some of which is already reserved
for various hardware functions (e.g. the text buffer and WS2812 driver), the external
memory is absolutely necessary to run larger programs.

Interfacing with DDR3 memory is notoriously difficult, requiring complex logic on both
physical and logical layers. For this reason, the Free Software LiteDRAM core [47] is
used to integrate the entire memory interface into the SoC. While irrelevant to the SoC,
it can still be considered a slight peculiarity that the LiteDRAM core actually contains
an entire separate RISC-V core to coordinate initialization of the memory.

8.6 External Bus

Bridging the internal SoC bus with the external peripheral bus requires a few steps.
For one, the external data bus is bidirectional, so tri-state outputs must be used on the
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FPGA. In addition, the internal bus arbitrates components using addresses alone, while
the external bus uses chip enable signals and overlapping address spaces. Lastly, the
bus must be slowed down. While the internal bus runs at a frequency of 50 MHz, a
reasonable frequency for the external circuitry is around 1 MHz. To achieve this, a
clock divider is used to only change the state of the external bus interface every 64th
clock cycle, resulting in an effective bus speed of under 1 MHz.

Due to a mistake in the adapter board layout, the nibbles of the address and data buses
are reversed (MSB to LSB are pins 7 to 0 on the FPGA, but 3 to 0 followed by 7 to 4
on the board). Thanks to the completely arbitrary mapping of FPGA pins, this can be
mitigated without using any additional resources.

9 SOFTWARE

9.1 Bootloader

The CPU loads its machine code from an FPGA-internal block RAM. The initial value
for this RAM is part of the bitstream, and if any changes to it are required, the entire
project has to be resynthesized. Because this takes upwards of 5 minutes, a different
solution was created: a fixed bootloader is encoded into the block RAM, which is able
to read additional program code (the payload) from the UART at runtime and store it to
available memory. After the transfer is complete, it simply jumps to the base address
of the payload and continues execution from there. When the current payload exits or
a hardware reset is actuated, a new program can be loaded instantly.

Because many subroutines are used in both the loader and the payload, duplicating
them in the payload would be a waste of space. Using custom linker scripts and com-
piler flags, the payload is linked against the functions in the loader. Whenever a loader
function is called from the payload, execution jumps to bootloader code, executes the
requested actions and then returns to the payload.

9.2 Drivers

Several components required writing functions to make them easier to use. Some are
as simple as writing a value to a specific memory location:

void set_rgb_led(size_t num, uint32_t color) {
((volatile uint32_t=*)ADDRESS_RGB_LEDS)[num] = color;
}
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Listing 26: Function to set the colour of an RGB LED on the Arty board

Others, like the function to write a character to the screen are more complicated and
use further subroutines:

void vga_putchar(screen_t *s, unsigned char c) {
switch(c) {
case '\n’:
set_cursor_pos(s, s->row + 1, 0);
break;

case '\b’:
// DEL
case Ox7F:
if (s->col > 0) {
set_cursor_pos(s, s->row, s->col - 1);
}
if (c == OXx7F) {
set_curr_char(s, ' ');
}

break;

default:
set_curr_char(s, c);
set_cursor_pos(s, s->row, s->col + 1);

Listing 27: Function to write a character to the screen

10 TesTING

10.1 RISC-V Compliance Tests

The RISC-V Compliance Test Suite [42] can be used to empirically confirm the correct
functionality of a RISC-V processor. It consists of a series of programs that perform
some operations related to a specific feature, then write some result data to a memory
region. This memory region is then compared to a “golden signature”, which was
produced by a processor implementation that is known to be correct.

The initial implementation of the compliance tests uncovered several bugs in the pro-
cessor core:

e The bitshift instructions (SLL, SRL, SRA, etc.) must, according to the RISC-V
standard, only use the lower 5 bits of the second operand as a shift offset. The
implementation used all 31 bits instead, causing a test failure.
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e Reading a signed value of a size less than 32 bits from memory would not per-
form proper sign extension. For example, reading a byte value of OxFF (-1)
would result in an expanded machine word of 0x0000_00FF (255) instead of
OxFFFF_FFFF.

e The SLTIU (Set less than immediate; unsigned) instruction compares a given
register with a constant provided as part of the instruction (the immediate). While
the comparison is unsigned, the 12-bit immediate must be sign-extended as if
it were a signed integer. The implementation wrongly assumed that the sign-
extension should be unsigned as well.

e The Instruction Set Manual specifies exceptions that must be raised when a mis-
aligned memory access occurs. These exceptions were not yet implemented, but
since the compliance tests check for them, the functionality was added to make
the tests pass.

Since these tests are easily automated, they were added to the GitLab Continuous
Integration (Cl) [43] configuration. Whenever a new Git commit is pushed to GitLab, the
tests are run automatically, and any failures are reported to the responsible committer
via email.

10.2 Formal Verification

While carefully selected simulation is useful to uncover bugs and to ensure they can’t
happen again (regression testing), it never offers complete certainty - it is simply im-
possible to manually cover all possibilities of inputs. With formal verification, the circuit
under test is expressed using a mathematical model and an algorithm (a SAT solver)
ensures that certain manually-selected criteria are always fulfilled. A detailed explana-
tion of the algorithm can be found in [44].

As an example of formal verification, the core’s ALU (subseciion 7.4)) has been ex-
tended with a formal verification definition, which can be seen in Lisfing 28. Skipping
over some helper logic in the beginning, the first statements add assumptions about
the entity’s input signals. These are rules that must be obeyed by designs using the
component, otherwise the correct function cannot be guaranteed (and is indeed un-
proven).

Below these assumptions, a process is used to calculate the expected result whenever
a calculation is requested. While most operations are implemented the same as in
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the main entity and thus have little value as a known-good comparison value, the bit-
shift operations are implemented incrementally in the main ALU and directly in the
verification; thus, the less resource-intensive ALU implementation can be confirmed to
function exactly like this more expensive method.

Afterwards, the first assertions actually happen: these are the theorems that the formal
verification suite will prove to be correct. The only two proven statements that are
actually relevant to users are that when a result has been computed, it will equal the
value computed using the aformentioned process, and that a computation will always
finish eventually.

Finally, two more assertions are used to give hints to the formal verification algorithm,
specifically the induction step. It is sometimes very difficult or even impossible to ar-
rive at a successful induction; these assertions can be proven trivially, eliminating a
number of potential scenarios that would otherwise make a successful complete proof
impossible.

(formal: block
signal prev_a : MATH_WORD;
signal prev_b : MATH_WORD;
signal prev_operation : alu_operation_t;

signal expected_result : MATH_WORD;
signal has_run : std_logic := '0’;

signal prev_enable_math : std_logic;
begin
default clock is rising_edge(clk);

process(clk)
begin
if rising_edge(clk) then
prev_a <= a;
prev_b <= b;
prev_operation <= operation;
prev_enable_math <= enable_math;
end if;
end process;

-- assume inputs won’t change while calculation is ongoing
assume always not valid -> (

a = prev_a and

b = prev_b and

operation = prev_operation
);

-- assume the "run" input is active at least until the result is valid
assume always prev_enable_math -> (enable_math or valid);

process(clk)
begin
if rising_edge(clk) and enable_math = ‘1’ and valid = '1’ then
has_run <= '1’;
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expected_result <= (others => '0’);
case operation is
when ALU_AND =>
expected_result <= a and b;
when ALU_OR =>
expected_result <= a or b;
when ALU_XOR =>
expected_result <= a xor b;
when ALU_SHIFTL =>
expected_result <= std_logic_vector(shift_left(
unsigned(a),
to_integer(unsigned(b(4 downto 0)))
));
when ALU_SHIFTR_L =>
expected_result <= std_logic_vector(shift_right(
unsigned(a),
to_integer(unsigned(b(4 downto 0)))
));
when ALU_SHIFTR_A =>
expected_result <= std_logic_vector(shift_right(
signed(a),
to_integer(unsigned(b(4 downto 0)))
));
when ALU_ADD =>
expected_result <= std_logic_vector(signed(a) + signed(b));
when ALU_SUB =>
expected_result <= std_logic_vector(signed(a) - signed(b));
end case;
end if;
end process;
-- When a result has been computed, it must be correct
assert always valid and has_run -> math_result = expected_result;
-- Eventually, a result will always be available
assert always enable_math -> eventually! valid;
-- Hints for induction
assert always not valid -> enable_math;
assert always not valid and (
operation = ALU_SHIFTL or
operation = ALU_SHIFTR_L or
operation = ALU_SHIFTR_A) -> not (or current_b(current_b’left downto 5));
end block;
N\

Listing 28: Formal verification block for the ALU
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Appendices

A PROJEKTMANAGEMENT

A.1 Schlussfolgerung / Projekterfahrung

Aus der Projektimplementierung konnten viele Lehren gezogen werden. Messun-
gen, welche mittels des Analog Discoverys durchgefihrt wurden, sind bis zu unge-
fahr 1IMHz Frequenz gut zu gebrauchen, werden danach jedoch sehr stark fehlerhaft.
Alle Bauteile in THT Bauform zu verwenden vereinfachte Messungen am Steckbrett
erheblich, jedoch werden diese bei hohen Frequenzen unzuverlassig. Viele Implemen-
tationsdetails wurden durch mindlich Gbergebene Hinweise verbessert, was zeigt, wie
wichtig zwischenmenschliche Kommunikation in technischen Bereichen ist.

A.2 Projektterminplanung

A.2.1 Meilensteine

Brauns Tabelle B zeigt die zu Projektbeginn festgelegten Meilensteine.

| Datum | Meilenstein |
21.10.2019 Pflichtenheft, Grobdesign, Testplan, Core-Grundstruktur
17.12.2019 Komplettes Core-Simulationsdesign
21.01.2020 | Simpler SoC (core+memory+LEDs) und Implementierung in FPGA
18.02.2020 Anbindung an diskrete Peripherie
10.03.2020 UART-Bootloader

Table 8: Meilensteine Brauns Armin

Plank Tabelle B zeigt die zu Projektbeginn festgelegten Meilensteine. Der Meilen-
steininhalt wurde nach der Aufgabenstellung zugeteilt, die Meilensteintermine wurden
vom Betreuer festgelegt.

Brauns, Plank Appendices 91



| Datum | Meilenstein |

22.10.2019 | Pflichtenheft, Grobdesign, Testplan, Beschaffung der Unterlagen
10.12.2019 Serielle Schnitstelle
14.01.2020 8-Bit-Parallelport
12.02.2020 Dokumentation
10.03.2020 4-Bit-DAC mit R-2R-Netz

Table 9: Meilensteine Plank Daniel

A.2.2 Work time reference

Brauns Table 00 shows the times worked.

Date Duration [h] | Task

2018-12-11 3 Create Quartus project, implement first proof-of-
concept design

2018-12-19 3 ALU design and corresponding test bench
2019-01-18 5 First processor prototype capable of running programs
2019-01-20 2 Preliminary firmware build system

2019-01-28 6 VGA generator prototype

2019-01-29 6 VGA text renderer

2019-02-04 4 Control and Status Registers

2019-02-07 12 16550 compatible UART

2019-02-09 5 UART boot loader

2019-02-09 1.5 Build system improvements

2019-02-18 6 Unify simulation and synthesis SoC entities
2019-02-19 2 Debug and fix text renderer timing issues
2019-02-19 2 Add interrupts to UART

2019-02-19 1 Handle UART interrupts in payload
2019-02-20 4 Makefile-based build system

2019-02-20 0.5 Documentation

2019-02-21 1 Debug and fix VHDL simulation warnings
2019-02-26 2 Diagnosing and fixing core bugs

2019-02-26 3 Exception control unit

2019-02-26 2 lllegal instruction exceptions

2019-03-01 0.5 Breakpoint + environment call exceptions
2019-03-01 1 Build system improvements

2019-03-04 1 Misc bug fixes

2019-03-10 2 Diagnose and fix interrupt related processor bug
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2019-03-11 3 CSR illegal instruction exceptions
2019-03-12 1 Preparations for pipelining core
2019-03-21 0.5 Switch to bare-metal compiler toolchain
2019-04-03 0.5 Build system improvements
2019-04-04 5 Design changes to improve timing
2019-04-05 4 Port design to Arty A7 and Vivado
2019-04-06 3 Port design to Arty A7 and Vivado
2019-04-06 3 TMDS generator frontend
2019-04-07 1 Add DVI output to Arty SoC
2019-04-11 0.5 Simulation tooling

2019-04-19 1 Split into core and soc respositories
2019-04-19 3 Cleanup after repo split

2019-04-21 4 Text renderer work

2019-04-22 4 Vivado project generator script
2019-04-22 1 Target Arty S7

2019-04-25 3 Colors in text renderer

2019-05-07 3 Firmware tooling

2019-05-07 3 UART resiliency

2019-05-08 4 Software ring buffer

2019-06-05 4 WS2812 driver

2019-07-04 2 Vivado DDR3 IP

2019-07-10 3 DDRS3 interface

2019-07-13 6 memory development

2019-07-14 6 memory debugging

2019-07-19 3 Vivado in-circuit debugging
2019-07-25 5 Test HDMI output in hardware
2019-07-26 5 Add parity to UART

2019-09-19 1 Remove DEO/Quartus support
2019-10-04 1 UART Modem

2019-10-04 3 VHDL-2008 memory simulation model
2019-10-10 2 new core

2019-10-13 5 new core

2019-10-14 1 new core

2019-10-19 6 new core

2019-10-22 2 Merge new core

2019-10-31 5 Unify simulation and vivado SoC entities
2019-11-14 1 Fix to_integer simulation warnings
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2019-11-21 DDR3 simulation entity

2019-12-01 Investigate Free toolchains
2019-01-02 0.5 Code cleanup

2019-01-12 4 Work toward free toolchain
2019-01-18 5 Toolchain testing and debugging
2019-01-23 1 UART improvements

2019-01-24 6 Switch whole project to Free toolchain
2019-01-25 3 Memory self-test routines
2019-01-25 0.5 Prepare ALU for mul/div

2019-02-01 7 Simplify core

2019-02-02 5 Compliance tests and core bug fixing
2019-02-02 2 GitLab ClI

2019-02-04 1 Update toolchain

2019-02-08 5 Investigate LiteEth ethernet core
2019-02-09 5 Develop missing LiteEth features
2019-02-11 4 Add LiteEth to SoC

2019-02-16 2 LiteEth debugging firmware routines
2019-02-18 4 LiteEth simulation model
2019-03-01 2 Dependency updates

2019-03-02 2 Merge synthesis and simulation socs
2019-03-06 2 External bus interface

2019-03-06 3 Test external bus

2019-03-09 3 Debug UART boot

2019-03-15 1 Remove Vivado support
2019-03-28 4 Documentation

2019-03-28 1 Refactor ALU

2019-03-29 2 Documentation

2019-03-29 3 Add formal verification

2019-03-30 3 Documentation

2019-03-31 4 Documentation

2020-04-01 SUM 277h

Table 10: Work time reference - Brauns

Brauns, Plank

Appendices

94



Plank Table @1 shows the times worked.

Date Duration [h] | Task

2019-09-06 4.25 start of thesis document

2019-09-07 2.25 planning of thesis

2019-09-20 1 planning part two, input into database

2019-09-23 0.5 corrections in database

2019-09-25 0.5 discussions with supervisor about deadlines

2019-09-27 0.25 reformatting and discussion about database entry

2019-10-11 2 tests and high level design for MS1

2019-10-12 3.75 gather PDFs for MS1

2019-10-16 2.5 tests and high level design for MS1

2019-10-17 2.5 tests and high level design for MS1

2019-10-20 4.25 tests and high level design for MS1

2019-10-22 3.5 Finalisation tests and high level design for MS1

2019-12-08 4.75 Download thesis template and implement

2020-01-03 6.75 Planning and early schematics of serial module

2020-01-04 2 Parallel port layout

2020-01-08 3.75 Serial console breadboard test

2020-01-11 2.5 Attempting interaction with 16550

2020-01-18 4.5 Attempting interaction with 16550 nailing down errors

2020-01-18 3 Attempting interaction with 16550

2020-02-25 1 Help partner with hosting tar.gz file

2020-01-26 6.25 Attempting interaction with 16550 no output

2020-02-01 3 Attempting interaction with 16550 quartz doesn’t os-
cillate

2020-02-07 5.5 Attempting to make 1.8432MHz oscillators oscillate

2020-02-08 3 Oscillation succeeded... finaly

2020-02-09 7.75 Transmit character in serial via 16550

2020-02-10 4 Serial console eurocard

2020-02-11 5 Serial console and arduino eurocard

2020-02-12 5 Serial console and arduino eurocard

2020-02-13 4 Serial console and arduino eurocard testing

2020-02-14 6 Serial console and arduino eurocard code

2020-02-15 3.5 Serial console and arduino eurocard code

2020-02-18 3.5 ECHOQO! Program

2020-02-19 3.5 DAC schematic and breadboard beginning

2020-02-20 2.25 DAC driver simulation attempt
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2020-03-01 3.25 Level shifter test and verification
2020-03-04 2 DAC fifo breadboard

2020-03-08 7.5 breadboard final test DAC and FIFO and eurocard
2020-03-10 4.75 DAC module test and sine generation code
2020-03-11 4.25 textadventure start

2020-03-12 4.25 textadventure polling dac and 16550
2020-03-13 4.5 finalisation of everything in school COVID-19
2020-03-14 5 textadventure DAC mode implementation
2020-03-15 4 textadventure sound routines

2020-03-17 4 textadventure gameplay

2020-03-18 6 documentation

2020-03-19 4 documentation

2020-03-20 3 documentation

2020-03-21 1 textadventure gamplay

2020-03-22 0.5 textadventure gamplay

2020-03-23 6.25 documentation

2020-03-24 6.75 documentation

2020-03-25 7.25 documentation

2020-03-26 7 documentation

2020-03-27 5.75 documentation

2020-03-28 4.5 documentation

2020-03-29 6.5 documentation

2020-03-30 9.75 documentation

2020-03-31 0 documentation

2020-04-01 SUM 229.5h

Table 11: Work time reference - Plank

B CONTENTS OF THE FLASH DRIVE

This section outlines the contents of the flash drive, which are two folders “AB“ and

“DP*, one containg the files of Armin Brauns and one for Daniel Plank respectively.

B.1

Armin Brauns

e external/: External dependencies as submodules
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firmware/: See firmare/README.md

sim/: GHDL wave options and GTKWave save files for test bench traces

tests/: High-level tests

— formal/: SymbiYosys formal verification tests

— riscv-compliance-target/: YARM target for RISC-V compliance test
suite

vhdl/: All VHDL code

components/: Various SoC components

core/: The YARM processor core

memories/: Various memory primitives, tweaked to work with yosys

simulation/: Simulation models for primitives and external IP

tests/: Test benches

B.2 Daniel Plank

| Directory | Contents |
code Code sampkes written for this thesis
dipl The source code for this thesis in ATEX
documents Datasheets and documents referenced in this thesis
MSH1 The original milestone test plans, high level design and documents for MS1
schematics Schematics for KiCAD used in this thesis
textadv The textadventure written for the hardware peripherials

Table 12: Contents of the DP directory on the flash drive

C A sHorT INTRODUCTION TO VHDL

Designing a processor is a big task, and it's easiest to start very small. With software
projects, this is usually in the form of a “Hello World” program - we will be designing a
hardware equivalent of this.

C.1 Prerequisites

Other than a text editor, the following Free Software packages have to be installed:
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ghdl [36] to analyze, compile, and simulate the design
gtkwave [45] to view the simulation waveform files

yosys [33] to synthesize the design

ghdlsynth-beta [35] to synthesize the design
nextpnr-xilinx [37] to place and route the design

Project X-Ray [38] for FPGA layout data and bitstream tools

openFPGALoader [46] to load the bitstream onto the FPGA

C.2 Creating a design

A simple starting design is an up/down counter. The following VHDL code describes
the device:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter is

port (
clk : in std_logic;
reset : in std_logic;
enable : in std_logic;

direction : in std_logic;
count_out : out std_logic_vector(7 downto 0)
)8
end counter;

architecture behaviour of counter is

signal count : unsigned(7 downto 0) := (others => '0’);
begin
proc: process(clk)
begin
if reset then
count <= (others => '0’);
elsif rising_edge(clk) and enable = '1’ then
if direction = '1’ then
count <= count + 1;
else
count <= count - 1;
end if;
end if;
end process;
count_out <= std_logic_vector(count);
end behaviour;

-

counter.vhd
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In order to test this design, a test bench has to be created:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter_tb is
end counter_tb;

architecture test of counter_tb is

signal clk, reset, enable, direction :

std_logic;

signal s_count_out : std_logic_vector(7 downto 0);

signal count_out : unsigned(7 downto 0);

begin
uut: entity work.counter
port map (
clk => clk,
reset => reset,
enable => enable,

direction => direction,

count_out => s_count_out

)

count_out <= unsigned(s_count_out);

simulate: process
begin
clk <= '0’;
reset <= '1’;
enable <= '0’;

wait for 30 ns;

assert count_out = 0;
reset <= '0’;

clk <= '0’;

wait for 10 ns;

clk <= '1’;

wait for 10 ns;
assert count_out = 0;

enable <= '1’;
direction <= '0’;

clk <= '0’;
wait for 10 ns;
clk <= '1";

wait for 10 ns;
assert count_out = 255;

direction <= '1’;

clk <= '0’;
wait for 10 ns;
clk <= '1’;

wait for 10 ns;

clk <= '0’;
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end test;
.

wait for 10 ns;
clk <= '"1";
wait for 10 ns;

assert count_out = 1;

wait for 30 ns;

wait;
end process;

C.3 Simulating a design

counter_tb.vhd

# analyze the design files
ghdl -a --std=08 x.vhd
# elaborate the test bench entity
ghdl -e --std=08 counter_tb

# run the test bench, saving the signal trace to a GHW file
ghdl -r --std=08 counter_tb --wave=counter_tb.ghw

# open the trace with gtkwave (using the view configuration in
counter_tb.gtkw)

gtkwave counter_tb.ghw counter_tb.gtkw

Listing 31: Commands required to simulate the counter design

C.4 Synthesizing a design

An additional Xilinx Design Constraints (XDC) file is required to assign the signals to
pins on the FPGA:

set_property
set_property
set_property
set_property

set_property
set_property
set_property
set_property
set_property
set_property
set_property
set_property

set_property
set_property
set_property

LoC
LoC
Loc
LoC

Loc
LoC
Loc
Loc
LoC
Loc
LoC
LocC

D9
C9
A8
C11

F6
J4
J2
H6
H5
J5
T9
T10

[get_ports
[get_ports
[get_ports
[get_ports

[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports

clk]
reset]
enable]
direction]

count_out[0]]
count_out[1]]
count_out[2]]
count_out[3]]
count_out[4]]
count_out[5]]
count_out[6]]
count_out[7]]

IOSTANDARD LVCMOS33 [get_ports clk]
IOSTANDARD LVCMOS33 [get_ports reset]
IOSTANDARD LVCMO0S33 [get_ports enable]
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File Edit Search Time Ma Help
v .J ﬁ @ ﬂ Ar) l( ’)' (‘ “> From: 0 sec To: 140 ns Marker:1fs | Cursor: 677
Signals

clk=6
reset=1
enable =0
direction=u

count_out[7:0] =0
Signals

Filter:

Append Insert  Replace

Figure 45: Screenshot of the counter test bench waveform in GTKWave

set_property IOSTANDARD LVCMOS33 [get_ports direction]
set_property IOSTANDARD LVCMOS33 [get_ports count_out[0]]
set_property IOSTANDARD LVCMOS33 [get_ports count_out[1]]
set_property IOSTANDARD LVCMOS33 [get_ports count_out[2]]
set_property IOSTANDARD LVCMOS33 [get_ports count_out[3]]
set_property IOSTANDARD LVCMOS33 [get_ports count_out[4]]
set_property IOSTANDARD LVCMOS33 [get_ports count_out[5]]
set_property IOSTANDARD LVCMOS33 [get_ports count_out[6]]
set_property IOSTANDARD LVCMOS33 [get_ports count_out[7]]
-

counter.xdc

# synthesize with yosys
yosys -m ghdl.so -p '’
ghdl --std=08 counter.vhd -e counter;
synth_xilinx -flatten;
write_json counter.json’
# place and route the design with nextpnr
nextpnr-xilinx --chipdb xc7a35tcsg324-1.bin --xdc counter.xdc
--json counter.json --fasm counter.fasm
# convert the FPGA assembly to frames
fasm2frames.py --part xc7a35tcsg324-1 counter.fasm counter.
frames
# convert the frames to a bitstream
xc7frames2bit --part-name xc7a35tcsg324-1 --frm-file counter.
frames --output-file counter.bit
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# upload the bitstream to the FPGA
openFPGALoader -b arty counter.bit

Listing 33: Commands required to synthesize the counter design

The current value of the counter is displayed in binary on the eight LEDs on the board.
When switch 0 (enable) is in the high position, the counter can be advanced using
button 0, with the direction set by switch 1. Button 1 resets the counter to zero.
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